Чтение онлайн

ЖАНРЫ

Как предсказать курс доллара. Поиск доходной стратегии с языком R
Шрифт:

Подробнее о стационарности временных рядов можно прочитать в моей книги «Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel Задание и EViews» – см. главу 1 «Понятие о стационарном и нестационарном временном ряде, выявление нестационарности ряда графическим способом».

Проверка авторегрессионного процесса на стационарность проводится следующим образом. Согласно нулевой гипотезе, предполагается, что если =1, то временной ряд считается нестационарным, а в случае ее опровержения принимается альтернативная гипотеза, утверждающая, что <1, а, следовательно, ряд стационарный. В ходе решения обычного уравнения регрессии рассчитывается t– статистика для коэффициента регрессии , совпадающая с расчетными

значениями статистики Дикки-Фуллера, которая потом сравнивается с критическими значениями статистики Дикки-Фуллера (обычно в книгах они даются в специальных таблицах, но в R мы их получаем в готовом виде).

Поскольку проверка гипотезы проводится по одностороннему критерию, то в этом случае, если расчетное значение t-статистики для коэффициента регрессии будет ниже критического значения статистики расширенного теста Дикки-Фуллера (с поправкой на число наблюдений), то в этом случае нулевая гипотеза о том, что =1 отклоняется и принимается альтернативная гипотеза о том, что < 1, а, следовательно, тестируемый временной ряд можно считать стационарным. Для того, чтобы провести расширенный тест Дикки-Фуллера загружаем для текущей работы пакет urca. Если его еще нет на Вашем компьютере, то воспользуйтесь командой install.packages(‘urca’), а затем введите следующий код:

> library(urca)

> Долл.США_Руб.адф <– ur.df(Долл.США_Руб, type = "drift")

# проводим расширенный тест Дикки-Фуллера

# опция теста type = "drift" означает константу

> summary(Долл.США_Руб.адф)

# вывод итогов теста

В результате получаем табл. 2 с выводом данных по итогам выполнения теста расширенного теста Дикки-Фуллера.

Табл. 2. Вывод данных по итогам выполнения теста расширенного теста Дикки-Фуллера

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Test regression drift

Call:

lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)

Residuals:

Min 1Q Median 3Q Max

–8.165 -0.052 -0.014 0.035 6.641

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.019965 0.011019 1.81 0.07 .

z.lag.1 -0.000343 0.000327 -1.05 0.29

z.diff.lag -0.002071 0.013103 -0.16 0.87

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.405 on 5826 degrees of freedom

Multiple R-squared: 0.000194, Adjusted R-squared: -0.000149

F-statistic: 0.566 on 2 and 5826 DF, p-value: 0.568

Value of test-statistic is: -1.05 2.267

Critical values for test statistics:

1pct 5pct 10pct

tau2 -3.43 -2.86 -2.57

phi1 6.43 4.59 3.78

Источник: расчеты автора

Из табл. 2 следует, что значение тестовой статистики (Value of test-statistic) = -1.05 (рядом стоящая цифра 2.267 оценивает значимость включенной в тест константы), то есть выше критического значения tau2=-2.57 для 10% уровня значимости (или, что тоже самое для 90% уровня надежности = 100% – 10% уровень значимости). Таким образом нулевая гипотеза о наличии единичного корня не может быть отклонена, а потому временной ряд Долл.США_Руб нельзя считать стационарным. Аналогичным образом проверим на стационарность и другие временные ряды по всем факторам, включенным в уравнение регрессии 1. С этой целью введем следующие восемь строк кода:

> Евро_Долл.США.адф <– ur.df(Евро_Долл.США, type = "drift")

> summary(Евро_Долл.США.адф)

> Евро_Руб.адф <– ur.df(Евро_Руб, type = "drift")

> summary(Евро_Руб.адф)

>

Нефть.адф <– ur.df(Нефть, type = "drift")

> summary(Нефть.адф)

> Золото.адф <– ur.df(Золото, type = "drift")

> summary(Золото.адф)

По итогам всех этих четырех тестов с помощью функции summary нам удалось выяснить по каждому временному ряду, включенному в уравнение регрессии 1, что все они нестационарные. Делается это аналогичным образом, как и при анализе результатов, полученных нами с помощью функции summary(Долл.США_Руб.адф). Итоги этого анализа в целях экономии места в данном случае не приводятся.

Теперь проверим на стационарность остатки, полученные после решения уравнения регрессии 1. Заметим, что под остатками в данном случае имеется в виду разница между фактическими значениями Долл.США_Руб и их расчетными значениями, найденными по уравнению регрессии 1. Остатки в нашем коде обозначим как Уравн1$residuals, а в функцию ur.df введем type = "none", то есть расширенный тест Дикки-Фуллера будет проводиться, исходя из того, что в остатках нет ни константы, ни тренда. (В последнем случае в функции ur.df нужно было бы поставить опцию type = "trend").

>Долл.США_Руб.ост_адф <– ur.df(Уравн1$residuals, type = "none")

>summary(Долл.США_Руб.ост_адф)

По итогам тестирования команда summary(Долл.США_Руб.ост_адф) выдаст нам следующие итоги – см. табл. 3.

Табл. 3. Вывод данных по итогам выполнения расширенного теста Дикки-Фуллера по остаткам, полученным после решения уравнения 1

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Test regression none

Call:

lm(formula = z.diff ~ z.lag.1 – 1 + z.diff.lag)

Residuals:

Min 1Q Median 3Q Max

–1.2278 -0.0297 -0.0006 0.0274 1.2447

Coefficients:

Estimate Std. Error t value Pr(>|t|)

z.lag.1 -0.00751 0.00149 -5.03 0.0000005 ***

z.diff.lag 0.02879 0.01308 2.20 0.028 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.114 on 5827 degrees of freedom

Multiple R-squared: 0.00497, Adjusted R-squared: 0.00463

F-statistic: 14.6 on 2 and 5827 DF, p-value: 0.000000492

Value of test-statistic is: -5.031

Critical values for test statistics:

1pct 5pct 10pct

tau1 -2.58 -1.95 -1.62

Источник: расчеты автора

Как видим, значение тестовой статистики (Value of test-statistic) = -5.031, то есть ниже tau2=-2.58 – критического значения (Critical values for test statistics) для 1% уровня значимости (или, что тоже самое, для 99% уровня надежности). Следовательно, нулевая гипотеза о наличии единичного корня отклоняется с 99% уровнем надежности, а, потому остатки, полученные по итогам решения уравнения регрессии 1, носят стационарный характер. Как мы уже выяснили, эти остатки представляют собой линейную комбинацию нестационарных временных рядов, состоящих из четырех факторов (Евро_Долл.США+Евро_Руб+Нефть+Золото) с зависимой переменной Долл.США_Руб. При этом наличие стационарных остатков – при нестационарности временных рядов факторов, включенных в это уравнение регрессии – свидетельствует о наличии коинтеграции между всеми этими переменными, включенными в уравнение 1. Коинтеграция временных рядов значительно упрощает процесс их анализа, а также свидетельствует о совпадении их динамики в течение весьма длительного времени.

Поделиться с друзьями: