Кибернетика и общество (сборник)
Шрифт:
Я противопоставил предопределенное поведение крошечных фигурок на крышке музыкальной шкатулки контингенциальному, произвольному поведению людей и животных. Однако не следует полагать, что музыкальная шкатулка является типичным образцом деятельности всех машин.
Прежние машины – в особенности это верно для ранних попыток сконструировать автоматы – действительно функционировали по принципу замкнутого часового механизма. Но современные автоматические машины, например управляемые ракеты, неконтактные взрыватели, автоматы для открывания дверей, управляющее оборудование на химических заводах и прочие составляющие нынешнего арсенала автоматических машин с военными или промышленными функциями, обладают органами чувств, то есть наделены рецепторами, которые принимают сообщения извне. Эти рецепторы могут быть простейшими фотоэлектрическими элементами, которые изменяют электрический заряд, когда на них падает свет, и которые способны отличать свет от тьмы; или могут быть настолько сложными, насколько сложны по устройству телевизионные приемники. Они могут измерять напряжение благодаря колебаниям, возникающим в электропроводимости подведенного к ним провода, или измерять температуру посредством термопары, то есть прибора из двух различных, но соединенных друг с другом металлов,
Нам знакома также машина, воздействующая на внешний мир посредством сообщений. Автоматическое фотоэлектрическое устройство открывания дверей известно каждому, кто бывал на вокзале Пенсильвания-стейшн в Нью-Йорке. Оно используется и во многих других зданиях. Когда сообщение, состоящее в прерывании пучка света, передается на аппарат, это сообщение воздействует на дверь, и та открывается, позволяя пассажиру пройти.
Шаги между запуском машины такого типа через органы чувств и выполнением поставленной перед машиной задачи могут быть элементарными, как в случае с электрической дверью, или же быть, по сути, какой угодно степени сложности – в пределах ограничений нашей инженерной техники. Сложным мы называем действие, когда некие данные, передаваемые (будем далее определять эту операцию как ввод) с целью оказать воздействие на внешний мир (это воздействие далее определяется как вывод), могут претерпевать большое число комбинаций. Под комбинациями имеются в виду как объединения вводимых в настоящий момент данных, так и операции с ранее накопленными данными, чей запас мы называем памятью. Эти данные хранятся в самой машине. Наиболее сложными среди сконструированных на сегодняшний день машин, способных преобразовывать вводные данные в исходящие, являются быстродействующие электронные вычислительные машины, о которых я расскажу ниже более подробно. Выбор режима работы этих машин производится при помощи особого рода ввода (часто это происходит с применением перфорированных карт, магнитофонных лент или намагниченных проволок); вводимые данные определяют способ, которым машина будет выполнять конкретную операцию, в отличие от способов выполнения других операций. Вследствие частого использования перфорированных карт или магнитных лент (tape) для управления такими машинами процесс передачи данных, которые вводятся подобным образом и которые предписывают машине тот или иной режим работы по комбинированию информации, называется тейпингом (taping) [12] .
12
Термин не получил широкого употребления вследствие появления новых устройств ввода информации в компьютеры.
Выше отмечалось, что люди и животные обладают кинестетическим чувством, с помощью которого они регистрируют положение и напряжение своих мускулов. Чтобы любая машина, действующая в условиях разнообразия внешней среды, могла работать эффективно, необходимо передавать информацию о результатах ее собственных действий как часть той информации, в соответствии с которой она должна продолжать функционировать. Например, если мы управляем лифтом, недостаточно просто открывать наружную дверь: ведь инструкция, которую мы отдаем, должна предусматривать наличие лифта за этой дверью в момент ее открытия. Крайне важно, чтобы сигнал об открывании двери зависел от того факта, что лифт действительно находится на нужном месте, иначе он может задержаться по какой-либо причине и пассажир может шагнуть в пустую шахту. Такое управление машиной на основе ее фактической деятельности, а не на основании ожидаемого поведения, называется обратной связью и включает в себя чувствительные элементы, которые приводятся в действие моторными элементами и выполняют функцию предупреждающих сигналов или мониторов, то есть элементов, показывающих ход выполнения инструкций. Функция этих механизмов заключается в управлении механической тенденцией к дезорганизации; иными словами, они должны осуществлять кратковременную, локальную трансформацию обычного хода энтропии.
Я только что привел лифт в пример устройства обратной связи. В ряде других случаев важность обратной связи еще более наглядна. Например, наводчик артиллерийского орудия получает информацию от своих приборов наблюдения и передает ее орудию, дабы последнее нацелилось таким образом, чтобы снаряд поразил движущуюся цель в определенное время. При этом орудие само по себе должно использоваться при любых погодных условиях. В одних условиях погоды смазка нагревается, и ствол орудия перемещается легко и быстро. В других условиях смазка замерзает или смешивается с песком, и тогда орудие реагирует на отдаваемые ему команды с запозданием. Если эти команды подкрепить физическим действием (тычком), когда орудие медлит с выполнением инструкций и отстает от ожидаемого срока реагирования, ошибка наводчика отчасти компенсируется. Чтобы добиться наиболее единообразного поведения орудия, обычно конструкцию дополняют управляющим элементом обратной связи, который считывает запаздывание реакции устройства на введенные команды и с учетом этого отставания может обеспечить механический аналог физического тычка.
Разумеется, следует принять меры предосторожности, чтобы тычок не оказался слишком сильным, иначе ствол орудия минует заданное положение и придется возвращать его обратно в правильную позицию посредством ряда последовательных тычков, причем колебания могут усилиться до степени, которая чревата катастрофической нестабильностью. Если система обратной связи сама является управляемой – то есть, другими словами, ее собственное стремление к энтропии контролируется каким-то иным управляющим механизмом – и если она действует в жестко заданных
пределах, этого не произойдет; наличие обратной связи увеличивает стабильность поведения орудия. Иначе говоря, его поведение становится менее зависимым от трения, или, что то же самое, от запаздывания, вызванного загустеванием смазки.Нечто весьма схожее с этим наблюдается в человеческой деятельности. Когда беру сигару, я не намереваюсь приводить в движение какие-либо определенные мускулы. В самом деле, во многих случаях я попросту не знаю, какие именно мускулы задействуются. Я лишь запускаю в действие некий механизм обратной связи, конкретно – рефлекс, в котором совокупность сигналов о том, что я все еще не взял сигару, превращается в новый, нарастающий в интенсивности приказ запаздывающим мускулам, каковы бы те ни были. В итоге весьма единообразная и произвольная команда позволяет выполнить ту же самую задачу из разнообразнейших первоначальных положений и независимо от расслабления мускулов, вызванного утомлением мышц. Аналогично, когда веду машину, я не следую серии команд, зависящих, скажем, от мысленного образа дороги и от своего поведения. Если я вижу, что машина слишком сильно отклонилась вправо, это заставляет меня принять левее. Все зависит от фактического поведения автомобиля, а не просто от дороги; это обстоятельство позволяет мне почти с равной эффективностью управлять легким «Остином» или тяжелым грузовиком, отдельных навыков для управления каждой из этих машин не требуется [13] . К этому вопросу мы вернемся подробнее в главе, посвященной специальным машинам, где обсудим возможности, возникающие перед невропатологией благодаря исследованию машин, в работе которых возникают неисправности, схожие с расстройствами в человеческом организме.
13
Здесь автор чрезмерно оптимистичен, поскольку управление легковым автомобилем и грузовиком, принципиально похожее в теории, все-таки требует в значительной степени различных водительских навыков.
По моему мнению, физическое функционирование живых индивидуумов и работа некоторых новейших коммуникативных машин совершенно параллельны друг другу в аналогичных попытках контролировать энтропию посредством обратной связи. Те и другие располагают сенсорными рецепторами на одной из стадий цикла своей деятельности; иначе говоря, у обоих существуют специальные устройства сбора информации из внешнего мира на низких энергетических уровнях и для использования этой информацией в поведении человека или в работе машины. В обоих случаях эти внешние сообщения принимаются не в чистом виде, они проходят через преобразующие устройства – живые, если угодно, или неживые. Информация затем преобразуется в новую форму, доступную для применения на дальнейших стадиях деятельности. Как в животном, так и в машине эта деятельность имеет своей целью оказание воздействия на внешний мир. В каждом случае о фактическом воздействии на внешний мир, а не просто о предполагаемом воздействии, извещается центральный регулирующий аппарат. Этот комплекс поведения обычно игнорируется средним человеком; в частности, он не играет заметной роли в житейском анализе социальных процессов; однако мы вправе изучать как физическое реагирование индивида, так и органическое реагирование самого общества. Я не хочу сказать, будто социологи не подозревают о существовании и сложной природе коммуникации в обществе, но до последнего времени они проявляли склонность не замечать, до какой степени коммуникация является цементом, скрепляющим структуру общества.
В настоящей главе мы отметили фундаментальное единство комплекса идей, которые до недавних пор, как правило, не рассматривались в достаточной мере как близкие друг другу; речь о контингенциальности в физике, предложенной Гиббсом в качестве модификации традиционных ньютоновских взглядов, об августинской трактовке порядка и поведения, обусловленного такими взглядами, и о теории коммуникации между людьми, машинами и в обществе, рассматриваемой как временная последовательность событий, которая, хотя сама до определенной степени произвольна, стремится сдерживать движение природы к беспорядку, приспосабливая ее части к различным преднамеренным целям.
Глава II. Прогресс и энтропия
Как уже отмечалось, статистическое стремление природы к беспорядку – тенденция энтропии к возрастанию в изолированных системах – выражается вторым законом термодинамики. Будучи человеческими существами, мы не являемся изолированными системами. Мы принимаем извне пищу, которая генерирует энергию, и в результате оказываемся частичками более обширного мира, содержащего эти источники нашей жизнедеятельности. А еще важнее тот факт, что мы получаем информацию через наши органы чувств и действуем в соответствии с полученной информацией.
В настоящее время физики осознали значимость этого условия, насколько оно касается наших взаимоотношений со средой. Замечательным выражением роли информации в этом отношении является открытие Клерка Максвелла, известное в форме так называемого «демона» Максвелла. Последнего можно описать следующим образом.
Допустим, у нас имеется контейнер с газом и температура газа везде одинакова. Отдельные молекулы этого газа движутся быстрее, чем другие. Теперь предположим, что в контейнере есть маленькая дверца, через которую газ поступает в трубу, ведущую к тепловому агрегату, и что выпускное отверстие этого теплового агрегата посредством другой трубы соединено через другую дверцу с газовым контейнером. У каждой дверцы находится маленькое существо – «демон», – способное видеть приток молекул и открывать или закрывать дверцы в зависимости от скорости движения молекул.
«Демон» у первой дверцы открывает ее только для молекул с высокой скоростью движения и закрывает ее перед молекулами с низкой скоростью, поступающими из контейнера. Роль «демона» у второй дверцы в точности противоположна: он открывает дверцу только для молекул с низкой скоростью и закрывает ее для молекул с высокой скоростью. В результате температура с одной стороны повышается, а с другой понижается, тем самым порождая вечное движение «второго рода», то есть вечное движение, не нарушающее первого закона термодинамики, который гласит, что количество энергии в конкретной системе постоянно; однако одновременно происходит нарушение второго закона термодинамики, утверждающего, что энергия тяготеет к самопроизвольному понижению температуры. Иными словами, «демон Максвелла» как будто преодолевает тенденцию энтропии к возрастанию.