Чтение онлайн

ЖАНРЫ

Клеймо создателя
Шрифт:

Не менее привлекательно выглядит предположение о гомохиральности биологических молекул – в рамках той же гипотезы: поскольку практически все сахара обладают свойством хиральности, первая же молекула автокатализатора (моносахарида), имевшая существенные «эволюционные» преимущества, быстро вытеснила остальные.

Пармон дает следующее (физико-химическое) определение сакраментального предмета, о котором мы здесь говорим: «жизнь – это фазово-обособленная форма существования функционирующих автокатализаторов, способных к химическим мутациям и претерпевших достаточно длительную эволюцию за счет естественного отбора». Однако, без информационной компоненты такое определение сразу же лишает смысла обсуждавшиеся выше вопросы о том, являются ли живыми вирусы (за пределами клетки-хозяина), споры бактерий, плазмиды или бумажные версии геномов живых существ. В то же время на вопрос, откуда берутся фазово-обособленные формы, у химиков есть довольно убедительный ответ: известно, что при каталитическом синтезе некоторых полимеров – например, полипропилена или

полиэтилена – продукт формируется сразу в виде отдельной фазы – микрогранулы или глобулы, внутри которой работает катализатор, который и производит эти полимеры.

Если все происходило именно так, – заключает Пармон, – тогда РНК и ДНК образуются на любой планете, геологическая история которой сходна с историей Земли.

Отметим, что приведенная выше гипотеза объединяет, таким образом, две упомянутые Молекулярные Революции – возникновение хиральности и возникновение клеток. Поскольку возникновение генетического кода (вторая из трех Революций) вероятно – и мы это увидим – выходит за пределы химической трактовки, о нем мы поговорим отдельно, а пока вернемся к первому Большому Скачку молекулярной эволюции Смита и Шатмари (происхождение генов). Следующим его этапом – после возникновения молекулярных коннекторов – стало формирование машин матричного копирования – copymakers, как их назвал Марчелло Барбьери, амплификаторов, как – тоже не слишком удачно – переведем на «русский» это слово мы. Копирование линейной матрицы – элементарный акт дупликации гена – первый шаг возникновения феномена наследственности. Если следующий Большой Скачок определяется как возникновение протеинов, то название первого – абсолютно неудачно. Гены, то есть информация для производства протеинов, не могут существовать отдельно от этих протеинов: информация – термин не самодостаточный, а функциональный, предусматривающий определенную цель, самореализацию, прочтение. Два этих химически несравнимых мира – мир нуклеиновых кислот и мир протеинов – должны быть взаимно сопоставлены, чтобы один из них стал хранителем информации, а другой был организован в соответствии с этой информацией. Линейная запись информации, способная к матричному копированию (с некоторыми ошибками), идеально подходит для того, чтобы стать геном. Белковые молекулы, способные формировать разнообразнейшие трехмерные структуры, идеально подходят на роль ферментов (которыми в РНК-мире были куда менее эффективные рибозимы), а также других структур. Для сопоставления нуклеиновых белков и протеинов должны были возникнуть – и возникли – особые машины codemakers, в терминах Барбьери. Назовем их декодерами. Это слово подчеркивает не только простую причастность к чтению и реализации генетической информации, но и основную функцию этих молекул – ее дешифровку, то есть движение информации от гена, где она закодирована, к белку, который представляет расшифрованный текст. Что это за машины, и что это за феномен – генетический код, мы обсудим позднее. А пока

…………………

а пока поясним символ этой главы, и причину его выбора. Дело просто в том, что в мире нуклеиновых кислот латинская буква G символизирует одно из четырех азотистых оснований – гуанин (мы так и будем писать ее далее – прописью и курсивом). Это самое «тяжелое» основание (округленная молекулярная масса – 151) с химической формулой:

Дублет GG триплетного генетического кода контролирует синтез самой «легкой» аминокислоты – глицина, трехбуквенный символ которой – Gly (Гли – «по-русски»), а однобуквенный – а мы в дальнейшем будем использовать именно однобуквенные латинские символы (и будем писать их полужирным шрифтом в прописном варианте) – G. Ее округленная молекулярная масса – 75, а структурная химическая формула —

Наконец, если известную всем таблицу генетического кода представить «в плоском варианте (4х4)», то есть приняв во внимание только две первые кодирующие буквы и оставив, таким образом, только вертикальную (первые буквы кодонов) и горизонтальную (вторые буквы кодонов) координаты (выделены серым), а кодирущие буквы (азотистые основания) вдоль этих координат упорядочить по нарастанию молекулярных масс, то глицин G, кодируемый дублетом GG, займет шестнадцатую клетку (в правом нижнем углу таблицы):

Десятичное

число 16 в системах счисления с основаниями, большими, чем 16, записывается символом G (который в данном случае является цифрой, а не буквой). Пронумеровав приведенную таблицу генетического кода в этих системах счисления построчно, получим:

Забавное тройное совпадение, не правда ли? Благодаря ему Автор и выбрал номер этой главы – выбор, конечно, произвольный. Но Бог не играет в кости, и совпадения, о которых пойдет речь далее, будут уже не так забавны. Более того, они вряд ли будут даже совпадениями. Замечу теперь, что практически все идеи, которые лежат в основе последующих рассуждений, содержатся в этом пояснении – явно или нет.

Часть вторая. Машина генетического кодирования

Глава G@С.

Генетический код – явление «героя» (Х)

События, связанные с эволюцией Вселенной и коротко описанные выше, привели, в конечном счете (а может быть, и «в том числе») к возникновению жизни, центральным феноменом которой стало объединение мира нуклеиновых кислот и мира белков в единую автокаталитическую суперсистему, для чего потребовалось связующее звено обоих миров, доведенное до необходимого состояния – так называемый генетический код. Генетический код – это набор инструкций для однонаправленного перевода нуклеотидной последовательности в полипептидную. Таким образом, сегодняшний код составляют два компонента. Первый кодирующий компонент – это четыре азотистых основания (или нуклеотида, когда они фосфорилированы и составляют цепи РНК или ДНК).

Общее обозначение азотистых оснований приведено в таблице:

Из них состоит полинуклеотид – рибо– или дезоксирибонуклеиновая кислота, РНК или ДНК. В случае РНК четыре нуклеотида – это два пурина (аденин и гуанин в табличках ниже) и два пиримидина – урацил и цитозин. В молекуле ДНК одно из перечисленных оснований – урацил – заменен на тимин (T):

Полимером правовращающего сахара – рибозы или дезоксирибозы – в цепочку РНК или ДНК соединены трифосфаты этих оснований. Здесь показаны структуры одноцепочечных молекул ДНК (вверху) и РНК (внизу):

Второй кодируемый компонент генетического кода – это аминокислоты, из которых состоят полипептиды или белки. Из более ста пятидесяти природных аминокислот кодируемыми являются (по преимуществу) только 20:

Для обозначения аминокислот (напомним, что кодируемыми являются альфа-L-аминокислоты) используют либо трех-, либо однобуквенные символы; мы – как уже сказано – будем пользоваться последними. В таблице выделены гидрофильные (синие ячейки и белые буквы названий) и гидрофобные (желтые ячейки) аминокислоты, аминокислоты, способные нести заряд, отмечены знаками (+) или (-), ароматические аминокислоты (бирюзовые ячейки в колонке символов, иминокислота пролин – бирюзовое выделение); серусодержащие аминокислоты (желтые ячейки в колонке символов). В формуле молекул справа – одна и та же константная часть (участвующая в пептидной связи; полужирный шрифт), слева – боковая часть молекулы или радикал (R). Молекула пролина приведена к общей схеме гипотетическим размыканием (релаксацией) иминного кольца.

Очевидно, что аминокислоты отличаются друг от друга химической природой боковой цепи, которая состоит из группы атомов в молекуле аминокислоты, связанной с -углеродным атомом и не участвующей в образовании пептидной связи при синтезе белка. Вс разнообразие особенностей структуры и функции белковых молекул связано с химической природой и физико-химическими свойствами радикалов аминокислот. Именно благодаря им, белки наделены рядом уникальных функций, не свойственных другим биополимерам, и обладают химической индивидуальностью. Благодаря им, вновь синтезирующаяся полипептидная цепочка приобретает вторичную структуру, образуя определенной длины однотипные спирали, складчатость и повороты (изломы). Эта структура, в свою очередь, складывается в уникальную третичную, которая и обладает определенными функциями. Они могут быть усилены или модифицированы четвертичной белковой структурой, которую формируют уже не отдельные полипептиды, а их комбинация.

Поделиться с друзьями: