Когда фотон встречает электрон. Фейнман. Квантовая электродинамика
Шрифт:
Иначе и быть не могло: они начали сотрудничать и могли часами вести дискуссии в своих кабинетах, занятые «обсуждением вопросов о космосе», как вспоминал об этом Марри впоследствии. Все-таки речь шла о союзе, основанном на несовместимости характеров: Гелл-Ман воплощал в себе образованного ученого, который неукоснительно и со строгостью судил других и их идеи и который всегда следил за последними научными открытиями. В противовес ему, Фейнман никогда не интересовался награжденными лауреатами. Все, что его занимало, — это информация о том, было ли предположение правильным.
Влево или вправо?
Давайте
Размышляя над этим, мы можем прийти к выводу, что в данных условиях мы преследуем призрачную цель, так как физические законы не различают левую и правую стороны. Другими словами, если нам продемонстрировать видео столкновения двух машин или одной партии в бильярд, мы будем не способны определить, показаны нам картинки прямо или, наоборот, после того как они были отражены в зеркале. В физике такая зеркальная симметрия называется «сохранением четности».
Не все объекты Вселенной симметричны, когда мы наблюдаем их в зеркале. Неподвижная сфера является симметричной: тогда говорят о четности. В противном случае речь будет идти о нечетности. Эта симметрия (геометрическая) исчезает, если сфера начинает вращаться вокруг своей оси. Она больше не соответствует своему зеркальному отражению (см. рисунок).
Изменение четности меняет сферу, вращающуюся в одну сторону, на другую сферу, вращающуюся в обратном направлении. Мы можем проверить это, раскрутив глобус перед зеркалом. С другой стороны, интерес вызывает тот факт, что зеркало меняет местами левую и правую стороны, но не верх с низом. Ответ на этот извечный вопрос заключается в том, что зеркало прячет изменение четности: оно меняет координату по оси, которая перпендикулярна ему, и не меняет координаты на двух других осях, лежащих в плоскости, параллельной ему.
Закон сохранения четности предусматривает, что нечетные объекты не могут превращаться спонтанно в четные. И это важно: в противном случае мы смогли бы использовать спонтанное изменение четности, чтобы определить абсолютную правую и левую стороны. В случае субатомных частиц теория указывает, что если четность сохраняется, тогда четная частица не может распадаться на одну четную частицу и одну нечетную; зато она может распасться на две нечетные или две четные частицы.
В то же время физики открыли, что странные каоны не следуют этому правилу. Они распадаются на другие более легкие частицы, названные пионами, иногда в количестве двух, иногда — трех. Фейнман предложил объяснение такому аномальному поведению. Согласно ему, эта частица:
«...распадалась иногда на два, иногда на три пиона. Но никто не был готов смириться с этим, так как существует закон сохранения четности. Он предполагает, что все физические законы симметричны по отношению к их зеркальному отражению; с другой стороны, он утверждает, что элемент, который образует два пиона, не может также давать три пиона».
Симметрии
Физика обычно ищет закономерности в устройстве нашего мира, то, что обычно называют «законы природы».
Большинство из них можно описать при помощи математических формул. Симметрия создает одну из исследовательских
моделей законов природы. Мы все когда-то ее использовали. Если покрутить футбольный мяч на пальце, наше восприятие мяча не меняется: этот феномен называется осевой симметрией; одноцветные машины, выстроенные в один ряд, представляют трансляционную симметрию, то есть невозможно отличить одну машину от другой, так как последняя машина может быть похожей на первую. К тому же, за исключением нескольких очень особых деталей, мы не делаем различия между собой и нашим отражением в зеркале: это зеркальная симметрия. Все эти примеры позволяют нам понять смысл слова «симметрия»: это нечто, остающееся неизменным после преобразования. Какое значение она имеет в физике? Природные законы представляют собой симметрии, которые существуют во Вселенной, и знаменитый закон о сохранении энергии — это не что иное, как симметрия: существует количество энергии, которое остается неизменным.
Эмми Нётер около 1910 года.
Теорема Нётер
Эмми Нётер (1882-1935), молодой немецкий математик, — наш проводник на этом пути. В 1918 году она доказывает теорему, известную сегодня как теорема Нётер, названную в ее честь. В тишине своего дома (женщины в то время не могли становиться профессорами в университетах) она открывает, что для каждой симметрии, которая существует в природе, должен существовать некоторый закон сохранения. Согласно теореме Нётер, сохранение энергии существует, так как законы физики не меняются со временем: они остаются такими же, как и сто лет назад, как вчера или завтра. Импульс — это другая величина, которая соответствует однородности пространства: неважно, проводим мы опыт в Сан-Франциско или в Мадриде, — мы всегда получим одинаковые результаты. Теорема Нётер также предполагает, что если мы не видим никакого изменения в природе, изменяя правую и левую стороны, тогда существует одно значение (четность), которое остается постоянным.
Единственная приемлемая альтернатива сводилась к тому, что должно существовать два типа каонов, которые различаются четностью. В любом случае, это поднимало новую проблему, так как эти два каона, окрещенные физиками may и тета, были полностью идентичными: в обоих случаях речь шла об абсолютно одинаковых бозонах с равными массами. И только распад на две или три частицы позволял их различать.
Электрон, движущийся влево
Такова была ситуация весной 1956 года, когда Гелл-Ман и Фейнман начали сотрудничать. В то время Фейнман уже был ученым, известным среди своих коллег: его диаграммы стали атрибутом повседневной работы физиков, которые, когда приезжали в Калтех, почитали за честь зайти и поздороваться с ним. Все хотели побеседовать с Фейнманом и рассказать о своих проблемах в исследованиях, и он их слушал: эта черта, которая делала его неотразимым в глазах женщин, также располагала к нему его коллег.
В этом году Фейнман и Гелл-Ман приняли участие в самом важном для физики частиц событии — Рочестерской конференции, проходившей в одноименном городе. Умы присутствующих были заняты головоломкой тау- и тета-каонов. В ночь на пятницу молодой человек по имени Мартин Блок предложил Фейнману возможное объяснение явления: речь могла идти о двух процессах одной частицы, идущих с изменением четности при слабых взаимодействиях. У Фейнмана было плохое настроение, и он готов был признать собеседника идиотом из-за таких идей, но он быстро понял, что не может придумать никакого возражения по существу.