Чтение онлайн

ЖАНРЫ

Космос Эйнштейна. Как открытия Альберта Эйнштейна изменили наши представления о пространстве и времени
Шрифт:

В какой-то момент в 1950-е гг. физики отчаялись разобраться в элементарных частицах, поскольку новые частицы тогда открывали едва ли не каждый день. Роберт Оппенгеймер в раздражении однажды сказал: «Нобелевскую премию по физике следовало бы дать тому физику, кто не откроет в этом году ни одной новой частицы». Элементарным частицам надавали такое множество диковинных греческих названий, что Энрико Ферми сказал: «Если бы я знал, что будет так много частиц с греческими названиями, я бы стал ботаником, а не физиком». Но в теории струн, если бы можно было взять сверхмощный микроскоп и заглянуть непосредственно в электрон, выяснилось бы, что это не точечная частица, а колеблющаяся струна. Когда суперструна колеблется в другом режиме, или на другой ноте, она превращается в другую элементарную частицу, к примеру, в протон или в нейтрино. В этой картине элементарные частицы, которые мы видим в природе, можно рассматривать как самую

нижнюю октаву суперструны. Таким образом, лавина элементарных частиц, открытых за несколько десятилетий, представляют собой просто ноты на этой суперструне. Законы химии, которые кажутся очень путаными и произвольными, представляют собой мелодии, сыгранные на суперструнах. Сама Вселенная – это симфония струн, а законы физики – не что иное, как гармонии суперструн.

Теория суперструн может также вместить в себя все наработки Эйнштейна по теории относительности. Движение струны в пространстве-времени вынуждает окружающее пространство искривляться, в точности как предсказывал в 1915 г. Эйнштейн. Более того, теория суперструн окажется противоречивой, если струна не будет двигаться в пространстве-времени в соответствии с общей теорией относительности. Как сказал физик Эдвард Виттен, даже если бы Эйнштейн вообще не открыл общую теорию относительности, ее вполне можно было бы открыть иначе, через теорию струн. Виттен заметил: «Теория струн чрезвычайно привлекательна, потому что от гравитации в ней никуда не денешься. Все известные непротиворечивые теории струн включают в себя гравитацию, так что если в квантовой теории поля, как мы ее знаем на данный момент, гравитация невозможна, то в теории струн она обязательна».

Однако теория струн позволяет сделать и еще кое-какие удивительные предсказания. Струны способны непротиворечиво двигаться только в десятимерном пространстве (одно измерение на время и девять – на пространство). Более того, теория струн – единственная теория, которая устанавливает размерность своего собственного пространства-времени. Подобно теории Калуцы – Клейна 1921 г., она способна объединить гравитацию с электромагнетизмом, предположив, что высшие измерения могут колебаться, порождая силы, способные распространяться по трем измерениям, как свет. (Если добавить одиннадцатое измерение, то в теории струн возможны мембраны, колеблющиеся в гиперпространстве. Такой вариант называется М-теорией; он вбирает в себя теорию струн и позволяет взглянуть на нее по-новому, с позиции одиннадцатого измерения.)

Что подумал бы Эйнштейн, будь он сегодня жив, о теории суперструн? Физик Дэвид Гросс сказал: «Эйнштейн был бы доволен по крайней мере целью, если не реализацией… Ему понравилось бы, что в основе всего этого лежит базовый геометрический принцип – который мы, к несчастью, как следует не понимаем». Существо эйнштейновой единой теории поля, как мы видели, состояло в том, чтобы получить вещество (дерево) из геометрии (мрамора). Гросс сказал об этом так: «Чтобы построить само вещество из геометрии – а именно этим в определенном смысле занимается теория струн… теория гравитации, в которой частицы вещества, как и другие силы природы, возникают аналогично тому, как гравитация возникает из геометрии». Полезно вернуться к ранней работе Эйнштейна по единой теории поля и взглянуть на нее с позиции теории струн. Ключ к гению Эйнштейна в том, что он умел вычленить ключевые симметрии Вселенной, объединяющие законы природы. Симметрия, объединяющая пространство и время, – это преобразование Лоренца, или повороты в четырехмерном пространстве. За гравитацией стоит другая симметрия – общая ковариантность, или произвольные координатные преобразования пространства-времени.

Однако третий подход Эйнштейна к созданию великой объединяющей теории оказался неудачным – в основном потому, что ему недоставало симметрии, которая унифицировала бы гравитацию и свет или объединила мрамор (геометрию) и дерево (вещество). Конечно, он остро чувствовал отсутствие фундаментального принципа, который провел бы его сквозь дебри тензорного исчисления. Он даже написал однажды: «Уверен, чтобы добиться реального прогресса, необходимо выведать у природы еще один какой-нибудь общий принцип».

Именно это обеспечивает всем желающим суперструна. Симметрия суперструны называется «суперсимметрией»; это необычная и красивая симметрия, объединяющая материю и взаимодействия. Как уже упоминалось, у элементарных частиц есть свойство, именуемое спином; они ведут себя как вращающиеся волчки. У электрона, протона, нейтрона и кварков, из которых состоит вещество Вселенной, спин равен 1/2; все эти частицы называют фермионами в честь Энрико Ферми, исследовавшего в свое время свойства частиц с полуцелым спином. Кванты взаимодействий, однако, основаны на электромагнетизме (их спин равен 1) и гравитации (спин равен 2). Обратите внимание, что все они имеют целый спин и называются бозонами (в честь работ Бозе и Эйнштейна). Главное здесь то, что в общем и целом вещество (дерево) строится из фермионов с полуцелым спином, тогда как взаимодействия (мрамор) строятся из бозонов с целым

спином. Суперсимметрия объединяет фермионы и бозоны. Очень существенно, что суперсимметрия разрешает обобщение дерева и мрамора, о котором мечтал Эйнштейн. Фактически суперсимметрия делает возможным новый тип геометрии, удививший даже математиков; это так называемое суперпространство делает возможным «супермрамор». При этом новом подходе получается, что мы должны обобщить старые измерения пространства и времени, включить в них новые фермионные измерения, которые затем позволят нам создать «супервзаимодействие», из которого в момент рождения Вселенной и появились все взаимодействия.

Таким образом, некоторые физики считают, что следует обобщить принцип общей ковариантности Эйнштейна, чтобы он звучал так: уравнения физики должны быть суперковариантны (то есть сохранять свою форму после суперковариантного преобразования).

Теория суперструн позволяет нам заново, в новом свете увидеть старую работу Эйнштейна по единой теории поля. Когда мы начинаем анализировать решения уравнений суперструн, мы сталкиваемся со множеством странных пространств, с которыми Эйнштейн работал еще в 1920-е и 1930-е гг. Как мы видели ранее, он рассматривал обобщенные римановы пространства, которые сегодня можно соотнести с некоторыми пространствами из теории струн. Эйнштейн перебирал эти странные пространства одно за другим с мучительным упорством (включая комплексные пространства, пространства с «кручением», «свернутые пространства», «обратно-симметричные пространства» и т. п.), но так и не смог найти верную дорогу, потому что у него не было путеводного физического принципа или картины, которые могли бы помочь ему выпутаться из математической паутины. Именно здесь на сцену выходит суперсимметрия – она выступает в роли организующего принципа, позволяющего нам рассматривать многие из этих пространств с иной точки зрения.

Но является ли суперсимметрия той самой симметрией, за которой Эйнштейн безуспешно охотился тридцать последних лет жизни? Ключ к единой теории поля Эйнштейна – то, что она должна была состоять из чистого мрамора, то есть строиться на чистой геометрии. Безобразное «дерево», наполнявшее изначально его теорию относительности, должна была поглотить геометрия. Возможно, ключ к теории чистого мрамора – именно суперсимметрия. В этой теории можно ввести нечто под названием «суперпространство», где само пространство становится суперсимметричным. Иными словами, очень может быть, что окончательная единая теория поля будет построена из «супермрамора», то есть из новой «супергеометрии».

В настоящее время физики, как в свое время Эйнштейн, уверены, что в мгновение Большого взрыва все симметрии мира были едины. Четыре фундаментальных взаимодействия, которые мы видим в природе (гравитация, электромагнетизм, сильное и слабое ядерные взаимодействия) в момент рождения Вселенной были едины и составляли некое «супервзаимодействие», а позже, по мере остывания Вселенной, разделились. Эйнштейнов поиск единой теории поля казался невозможным только потому, что сегодня силы мира ужасным образом разделены на четыре части. Эйнштейн считал, что, если бы мы могли вернуться в прошлое на 13,7 млрд лет, к моменту Большого взрыва, мы бы увидели космическое единство Вселенной во всем его величии.

Виттен утверждает, что теория струн займет когда-нибудь главенствующее место в физике точно так же, как квантовая механика главенствует в ней последние полвека. Однако на этом пути существует немало серьезных (очень серьезных) препятствий. Критики этой теории указывают на некоторые ее слабые места. Во-первых, ее невозможно проверить напрямую. Поскольку теория суперструн – это теория рождения Вселенной, единственный способ проверить ее – воссоздать Большой взрыв, то есть получить в ускорителе элементарных частиц энергии, примерно соответствующие энергии начала Вселенной. Для этого понадобился бы ускоритель размером с галактику, а это нереально даже для высокоразвитой цивилизации. Однако большая часть исследований в физике сегодня проводится косвенными методами, поэтому можно смело надеяться, что Большой адронный коллайдер позволит получить энергии, достаточные для тестирования этой теории. Коллайдер может ускорять протоны до триллионов электронвольт – энергии, достаточной, чтобы разбивать атомы. Физики надеются, анализируя осколки подобных фантастических столкновений, обнаружить новый тип частиц – суперчастицы, или «s-частицы», представляющие собой более высокие гармоники, или октавы, суперструн.

Есть даже предположения о том, что скрытая масса, или темная материя, может состоять из суперчастиц. Например, суперсимметричный партнер фотона, получивший название фотино, электрически нейтрален, стабилен и обладает ненулевой массой. Если бы Вселенная была заполнена газом из фотино, мы бы его не видели, но действовал бы он примерно так же, как темная материя. Однажды, если нам удастся все же распознать истинную природу темной материи, мы, возможно, получим косвенное свидетельство в пользу теории суперструн.

Поделиться с друзьями: