Чтение онлайн

ЖАНРЫ

Кровь: река жизни. От древних легенд до научных открытий
Шрифт:

Из других аномальных видов гемоглобина у жителей северной Индии у 1 % населения встречается гемоглобин D.

Гемоглобин С чаще всего встречается у африканских негров, так же как и гемоглобин S. Однако гемоглобин С более редок и отмечен только в Западной Африке, а не в тропических ее районах, характерных для распространения гемоглобина S. Самое высокое содержание гемоглобина S выявлено в северных областях Ганы (бывший Золотой Берег). Гемоглобин С составляет там около 28 % всех генов гемоглобина.

Как и в случае с гемоглобином S, один ген С (или любой другой) не представляет опасности. Возможно, гемоглобин С даже защищает от малярии, и есть

данные, что этот ген появился в результате недавней мутации и распространяется за пределы пораженных малярией районов. Встречаются редкие случаи, когда ребенок может наследовать два разных гена аномального гемоглобина: гемоглобин S и С. Это очень плохо и обычно приводит к смерти в раннем возрасте.

Гемоглобин Е чаще встречается в Юго-Восточной Азии. В Таиланде он составляет 13 % генов гемоглобина. В столице Индонезии Джакарте он составляет 6 % от всех генов. Идут споры о том, позволяют ли единичные гены D и Е организму более эффективно усваивать железо и тем самым обходиться меньшим его количеством.

Если это действительно так, то создается следующая картина. Аномальные виды гемоглобина появляются постоянно из-за случайных изменений (мутаций) генов гемоглобина. Почти всегда аномальный гемоглобин не столь эффективен, как обычный, и если не существует уравновешивающих недостатки преимуществ, а обычно их нет, то по истечении времени такой ген вымирает. Возможно, недавно обнаруженные виды аномального гемоглобина как раз из этой категории: мутации произошли недавно, и через несколько поколений такие гены могут исчезнуть.

С другой стороны, если один ген аномального гемоглобина позволяет людям более эффективно справляться с недоеданием или болезнями, как в случаях с генами С, D, Е и S, то они могут сохраниться за счет баланса своих достоинств и недостатков, если на достижение такого баланса хватит времени. Тогда аномальные гены чаще всего должны возникать в районах с низким уровнем жизни, а это так и происходит. Конечно, если аномальные гены будут проявляться чаще гена гемоглобина А, то последний может также исчезнуть.

Естественно, ученым было любопытно узнать, чем именно отличаются различные виды гемоглобина. При электрофорезе они ведут себя по-разному, следовательно, должны быть химические различия, однако выяснить это оказалось нелегким делом.

Обычные способы анализа белков показали, что химический состав гемоглобина А и S почти одинаков. Во всяком случае, не было выявлено никаких отличий. Однако каждая молекула состоит примерно из 8000 атомов. Если удалить или расположить по-другому всего несколько атомов, то в молекуле могут произойти изменения, хотя среди тысяч атомов нелегко выявить несколько расположенных в другом порядке.

Тем не менее, кажется, сейчас проблема уже решена.

Во-первых, атомы молекул белков расположены не в случайном порядке. Они располагаются маленькими группами, образуя соединения под названием аминокислоты, которые, в свою очередь (к сожалению), располагаются совершенно непредсказуемым образом. Существует девятнадцать различных аминокислот, из которых состоят почти все белки, и примерно столько же, которые встречаются только в некоторых белках. В молекуле гемоглобина нет необычных аминокислот — только девятнадцать обычных.

Молекула гемоглобина состоит примерно из шестисот аминокислот. Одна аминокислота в ней встречается около семидесяти пяти раз, другая — всего один раз, а остальные количественно представлены примерно равномерно.

Поскольку они не расположены в повторяющемся порядке, проблема определения, где находится какая аминокислота, кажется неразрешимой. Число возможных комбинаций аминокислот в молекуле гемоглобина более чем 10 619, то есть единица с 619 нулями. Это порядочное количество. Как в нем разобраться?

Известно, что каждая молекула гемоглобина состоит из двух одинаковых частей, поэтому можно узнать расположение только трехсот аминокислот в половине молекулы, но и это тоже непросто. Молекулу необходимо расщепить на более мелкие части.

Вернон М. Ингрэм из Кембриджского университета сделал это, обработав молекулу гемоглобина пищеварительным ферментом — трипсином. Трипсин вызывает расщепление цепи аминокислот в тех местах, где расположены аминокислоты лизини аргинин. В результате половина молекулы гемоглобина распадается на двадцать восемь фрагментов.

Эти фрагменты представляют собой короткие цепочки аминокислот, которые называют пептидами. Некоторые пептиды могут состоять всего из двух или трех аминокислот, другие — из дюжины или больше, в зависимости от расположения групп лизина и аргинина в исходной цепочке. Естественно, все двадцать восемь пептидов смешаны между собой, и их нужно разделить.

Для этого каплю смеси помещают на пористую бумагу (фильтровальную бумагу, которая первоначально использовалась в химических лабораториях для фильтрования— отделения твердых частиц от жидкости), которую затем смачивают нужным раствором. К ней прикрепляют два электрода и через бумагу пропускают электрический ток. Пептиды, подобно протеинам, устремляются к положительному или отрицательному электроду с разной скоростью, которая зависит от степени электрического заряда каждого пептида. Это и есть электрофорез на бумаге, о котором я уже упоминал.

В результате этого процесса пептиды делятся на несколько групп и распределяются в виде пятен по бумаге. Эти пятна нельзя рассмотреть невооруженным глазом, но их можно увидеть, если прибегнуть к некоторым манипуляциям. Бумагу можно обработать химическим составом, который вступит с пептидами в реакцию, в результате которой образуются окрашенные соединения. Или можно использовать ультрафиолетовые лучи, чтобы обычно невидимые вещества, поглотив их, проступили в виде темных пятен, стали черными или, наоборот, стали светиться. В каждом пятне локализовано несколько пептидов с одинаковыми электрическими свойствами, поэтому эти пептиды нужно разделять дальше. Это делается при помощи хроматографии, о которой стоит поговорить особо.

Хроматографию изобрел в 1906 году русский ботаник Михаил Цвет. Он хотел разделить различные пигменты из листьев растений. Эти пигменты были настолько схожи по химическому составу, что обычные методы разделения были не эффективны. Тогда Цвет использовал совершенно новый способ.

Он приготовил из смеси пигментов раствор и вылил его в колонку, наполненную измельченным известняком. Пигменты прикрепились к поверхности крошечных частиц в верхнем слое известняка, а жидкость, в которой они были растворены, прошла по колонке вниз и вышла из нее. Первоначально окрашенный раствор вышел бесцветным, а в верхней части колонки осталась цветная полоска пигмента.

Поделиться с друзьями: