Кровь: река жизни. От древних легенд до научных открытий
Шрифт:
Различные аминокислоты можно связать в цепь, соединив аминогруппу одной с карбоксильной группой другой. «Двойная аминокислота», полученная в результате слияния двух кислот, будет с одной стороны иметь свободную карбоксильную группу, а с другой — аминогруппу. Удлинение цепи может продолжаться с обеих сторон. Это не зависит от того, сколько аминокислот вступают в реакцию, если только оба конца аминокислотной цепочки не соединяются, образуя круг.
Серии аминокислот образуют единую цепочку, от которой отходят боковые группы. Каждая боковая группа обладает индивидуальными химическими свойствами, и общие свойства аминокислотной цепи зависят от распределения этих групп вдоль цепи. Это, в свою
Количество вариантов соединения сотен и тысяч аминокислот поистине невероятно. Молекула белка, состоящая всего из девятнадцати различных аминокислот, может создаваться 120 000 000 000 000 000 различными путями. В действительности же в единые белковые молекулы соединяются не девятнадцать, а сотни и тысячи аминокислот.
Неудивительно, что существует бесчисленное множество разновидностей белков. У каждого живого существа есть свой набор белков, у каждого человека в тысячах реакций могут принимать участие тысячи различных белков. Сложность строения белков и некоторых родственных им соединений обусловливает всю подвижность и многообразие жизни. Даже мельчайшее различие в расположении аминокислот в белковой молекуле, как я уже отмечал в главе 7, может оказать важное воздействие на организм.
Даже если бы белки из пищи усваивались организмом в неизменном виде, чего не происходит, поскольку их молекулы слишком крупны, то они не принесли бы нам пользы. Белки быка не похожи на белки человека, а белки травы не имеют ничего общего с белками быков. Проникновение из желудочно-кишечного тракта в кровь чужеродных белков может нанести вред организму и даже вызвать смерть. Об этом будет подробнее рассказано в следующих главах.
Однако если белковые молекулы, присутствующие в пище, разрушаются до аминокислот, а те, попав в организм человека, соединятся в иной последовательности, образуя белки человека, то все будет в порядке. Именно так и происходит.
Оказавшись в желудке, пища смешивается с кислым желудочным соком. Кислота вызывает медленный гидролиз белковых молекул, но в желудочном соке также содержится фермент пепсин, который ускоряет процесс гидролиза.
Соседние аминокислоты в цепи объединены пептидными связями. Обычная кислота, находящаяся в желудке, может вызвать гидролиз любой пептидной связи, но пепсин вызывает гидролиз лишь связей между определенными аминокислотами.
Подвергнувшись воздействию пепсина и кислоты, молекулы белков, будучи расщепленными на пока еще довольно крупные фрагменты, покидают желудок и попадают в тонкую кишку. Эти фрагменты представляют собой также аминокислотные цепочки, только эти цепочки относительно малы по сравнению с цепями белков. В отличие от белков они называются пептидами.
В двенадцатиперстной кишке пептиды смешиваются с соком поджелудочной железы, который содержит два фермента — они, как и пепсин, являются протеазами, то есть ферментами, ускоряющими гидролиз пептидных связей. Это трипсини химотрипсин. Каждый из них вызывает гидролиз только определенных пептидных связей. Однако пептидные связи, расщепляемые трипсином и химотрипсином, отличаются от тех, которые подвластны пепсину. Более того, даже эти два фермента также расщепляют разные пептидные связи.
В итоге пептидные связи, устоявшие перед пепсином и медленно действующим желудочным соком, быстро
разрушаются под воздействием трипсина и химотрипсина. Прежде чем пища пройдет в глубь тонкой кишки, она уже будет представлять смесь пептидов, состоящих из двух, трех или четырех аминокислот.Кишечный сок содержит многообразие катепсинов— специальных ферментов для гидролиза этих мелких пептидов, и на этой стадии белки наконец-то полностью расщепляются на отдельные аминокислоты, которые усваиваются организмом.
Помните, что все ферменты, упомянутые в этой книге, а также тысячи других, о которых не было сказано, являются молекулами белков. Они состоят из одних и тех же аминокислот, но в различных пропорциях и расположенных по-разному. Это прекрасный пример многообразия белковых молекул, о котором я уже говорил в этой главе.
Всосавшись в кишечнике, аминокислоты, так же как и глюкоза, попадают в воротную вену. После приема пищи содержание аминокислот в крови удваивается по сравнению с обычным уровнем. Примерно через шесть часов после еды этот уровень восстанавливается.
Однако в течение этого времени количество аминокислот в крови остается довольно низким по сравнению с их количеством, попавшим в воротную вену, потому что в печени аминокислоты, как и глюкоза, усваиваются и изменяются. Так же как из молекул глюкозы образуются гигантские молекулы гликогена, из молекул аминокислот в печени образуются гигантские молекулы белков.
Правда, аналогия не полная. Если большая часть глюкозы откладывается в печени про запас в виде гликогена, белки в печени не откладываются. В организме нет места, где бы мог запастись белок в ожидании непредвиденных ситуаций. Все белки постоянно так или иначе работают.
Белки, созданные печенью из аминокислот, попавших в нее через воротную вену, переходят обратно в кровь и растворяются в плазме. Это так называемые плазменные белки. Они не единственные протеины крови. Вспомните гемоглобин, тоже являющийся частью крови. Однако гемоглобин содержится в красных клетках. Плазменные протеины передвигаются свободно, растворившись в водной части крови. Их не ограничивают клеточные мембраны.
Плазменные белки подходят ко всем клеткам организма, и, как и глюкоза, захватываются ими. Клетки усваивают белки, расщепляют их до аминокислот и соединяют аминокислоты, образуя многообразие белков, которые необходимы нашему организму.
Но если белки не откладываются в печени, то как удается предотвратить попадание в кровь слишком большого количества плазменных белков? Где находится тонкий механизм, управляющий этим процессом, как в случае с глюкозой? Избыточная выработка белка происходит не столь часто, как избыточная выработка глюкозы, поскольку в пище обычно меньше белков и больше углеводов. Обычно богатая белками пища дороже, и ее употребляют реже.
Реакция организма на избыточное потребление белков проста. Печень может принять избыток аминокислот и подвергнуть их химическим изменениям, в результате которых удалятся атомы азота и образуется мочевина. Она попадает в кровь, оттуда в почки и выводится ими из организма, о чем говорилось в главе 8.
После удаления азота от аминокислоты остается фрагмент, содержащий атомы углерода, водорода и кислорода. Этот фрагмент расщепляется на углекислый газ, воду, при этом выделяется энергия, или сначала превращается в глюкозу, затем в гликоген, в виде которого и хранится в организме. Этот процесс называется гликонеогенезом(от греческого «рождение нового сахара», потому что представляет собой образование из вещества, не являющегося сахаром, гликогена, который дает начало сахару).