Крушение парадоксов
Шрифт:
Впрочем, он должен был и это знать из книги Декарта «Метеоры», в которой дано объяснение механизма возникновения радуги: первая радуга появляется в результате двукратного преломления и одного отражения света в капле, а вторая радуга есть результат двух преломлений и двух отражений. Декарт даже подтвердил свою теорию опытом по преломлению света в стеклянных шарах.
Однако не в характере Гука было ссылаться на чужие результаты.
Лишь через четверть века после «Микрографии» вышел из печати «Трактат о свете» Гюйгенса. Труд вылеживался в виде рукописи целых двенадцать лет. Однако открытия, сделанные Гюйгенсом, были столь важными, что быстро стали известными. В то время ученые охотно переписывались между собой.
Гюйгенс ввел в науку световые
Гюйгенс был, пожалуй, первым выдающимся представителем нового типа ученых. Он достиг незаурядных успехов в фундаментальных исследованиях в области математики и физики, но не менее ценными были его технические изобретения и конструкции. Разносторонность его необычайна. В молодости он отдавал предпочтение математике и астрономии. Открыл спутник Сатурна и его кольца. Основываясь на работах Галилея, изобрел маятниковые часы, а затем, участвуя в конкурсе, объявленном Британским адмиралтейством, изобрел вращающийся маятник-балансир и на его основе создал часы, не боявшиеся корабельной качки. Интересно, что Гюйгенс был избран иностранным членом Лондонского королевского общества в том же 1663 году, когда членом этого общества избрали и Гука, совместно с которым он установил важнейшие постоянные точки термометра — точку таяния льда и точку кипения воды.
В 1678 году Гюйгенс прочитал членам Парижской академии наук свой «Трактат о свете». В нем объяснены причины того, что происходит со светом при отражении и преломлении, в частности, при странном преломлении исландским шпатом. Продолжая традиции Декарта, требовавшего критического отношения к любому знанию, Гюйгенс в начале своего трактата вскрывает важную ошибку Декарта. Гюйгенс прямым расчетом показывает, что вывод о бесконечной скорости света, полученный Декартом на основании наблюдения затмений Луны, неубедителен из-за недостаточной точности наблюдений. «Они позволяют лишь утверждать, — пишет Гюйгенс, — что скорость света в сто тысяч раз больше скорости звука». Далее Гюйгенс использует изумительные наблюдения движения спутников Юпитера, проделанные за два года до того Ремером с целью определения скорости света. Проделав нужные вычисления и получив огромную величину, Гюйгенс восклицает: «И все же это нечто совсем отличное от мгновенного распространения, так как разница здесь такая же, как между конечной вещью и бесконечной».
В своих представлениях о природе света Гюйгенс во многом близок к Гуку: свет — это упругие импульсы в эфире, считает он, но нигде не пользуется понятием длины волны и не предполагает, что волны света имеют определенный период.
Несмотря на свою геометричность, метод Гюйгенса, основанный на построении сферических волновых фронтов, позволил ему, следуя традиции Декарта, вывести законы отражения и преломления света, которые до того принимались просто как опытные факты и не имели объяснения.
Мощь и эффективность своего принципа распространения света Гюйгенс продемонстрировал, объяснив таинственное расщепление луча света на два отдельных луча в кристаллах исландского шпата.
Гюйгенс назвал один из этих лучей «обыкновенным», ибо он подчинялся закону преломления Декарта, а другой — «необыкновенным», так как он нарушает этот закон и преломляется «неправильно».
«Двойное лучепреломление» открыто Братолином в 1669 году и казалось современникам не только необъяснимым, но и противоречащим всему, что написано о свете, в том числе Декартом и Гуком.
Возможность объяснить двойное лучепреломление была чрезвычайно важна для Гюйгенса, ибо его принцип приводил к противоречию с Гуком в важнейшем пункте, а именно в объяснении закона преломления
света. И тот и другой выводили закон преломления из различия скоростей света по обе стороны границы двух сред. Например, границы воздуха и стекла. При этом показатель преломления, по Гюйгенсу, выражается отношением скорости света в первой среде к его скорости во второй. У Гука же получалось обратное отношение. А экспериментальные возможности были таковы, что об измерении скорости света в лабораторных условиях не могло быть и речи.Впрочем, можно понять, почему Гюйгенс не пошел до конца в разработке волновой теории света. Он исходил из аналогии многих оптических явлений с акустическими. А акустика имеет дело со звуковыми волнами. Но при распространении звука частицы воздуха колеблются вдоль направления, по которому бежит волна. Если свет действительно такая же продольная волна в эфире, то совершенно невозможно объяснить явление поляризации света, открытое самим Гюйгенсом при исследовании двойного лучепреломления. Ведь оба луча, на которые распадался луч света, падающий на кристалл исландского шпата, совершенно различны и преломляются по-разному. Ничего подобного в акустике нет и быть не может.
Звуковые волны не способны распространяться подобно свету. Солнечный свет, в этом может убедиться каждый, проходит через отверстие в ставне в виде узкого, четко ограниченного луча. А звук, проходя даже через узкий канал в каменной стене, заполняет всю комнату.
Нет, Гюйгенс, которого принято считать создателем волновой теории света, сделал только первый шаг. Он даже не попытался объяснить открытое Гримальди явление дифракции — огибание светом препятствий, хотя книга Гримальди «Физико-математический трактат о свете, цветах и радуге» появилась задолго до трактата Гюйгенса.
Волновые идеи уже тогда носились в воздухе, и Гримальди, обнаруживший огибание света вокруг препятствий, не мог обойтись без представления о волнах. Но в его понимании свет не был собственно волнами, он представлял себе свет жидкостью, двигающейся быстро через пространство и прозрачные тела. Воображение рисовало Гримальди, как волны появляются в световой жидкости при ударе ее о края препятствия, что заставляет световую жидкость затекать за препятствия совсем так, как вода в ручье обтекает камни. Гримальди на правах первооткрывателя назвал это явление дифракцией. Оно навсегда осталось в науке, выйдя далеко за пределы оптики и наполнившись совершенно новым содержанием.
Впрочем, не только название, придуманное Гримальди, дожило до наших дней. Гримальди первым составил карту Луны и дал дошедшие до нас имена многим деталям ее видимой поверхности.
Случаю было угодно, чтобы в том же 1665 году, когда вышли в свет и посмертное издание трактата о свете Гримальди, и «Микрография» Гука, окончил Тринитиколледж в Кембридже и получил степень бакалавра фермерский сын, сирота Исаак Ньютон. Уже в студенческие годы замкнутый юноша начал разрабатывать идеи, вознесшие его выше всех естествоиспытателей мира. Он много спорил с Гуком, который иногда стремился доказать, что кое в чем опередил Ньютона. Впрочем, и другие ученые имели основания обвинять Гука в стремлении присвоить чужие достижения. Дискуссии с Гуком привели, в частности, к тому, что Ньютон не публиковал своих работ в области оптики до смерти Гука.
Ньютон считал свет потоком частиц-корпускул. И, тем не менее он лучше всех современников понимал всю важность периодических свойств света. Ведь, наблюдая цветные кольца, которые каждый может увидеть, положив слабовыпуклую стеклянную линзу на плоскую пластинку и измеряя их размеры, Ньютон мог вычислить длины волн, соответствующие различным цветам. Однако Ньютон понимал, что, уподобив волны света волнам звука, нельзя не только объяснить двойного лучепреломления, но и невозможно описать прямолинейное распространение световых лучей. Все это заставило Ньютона прийти к выводу о телесности света и считать свет потоком корпускул.