Чтение онлайн

ЖАНРЫ

Шрифт:

Статья Лугового, содержащая эти соображения и результаты, появилась в журнале «Доклады Академии наук СССР» в 1967 году. Но во всех экспериментальных работах, продолжавших появляться до следующего года, сообщалось о том, что за точкой схлопывания пучка наблюдается волноводное распространение света в виде очень тонких ярких нитей.

Ответ машины

Только Прохоров поддержал своего молодого сотрудника. Он сам включился в эти исследования и привлек к ним А.Л. Дышко, специалистку по вычислительной математике. Раз приближенные аналитические методы оказались непригодными, пришлось призвать на помощь электронную вычислительную машину. Предстояла

сложная трудоемкая работа.

Решили отказаться от каких-либо предвзятых предположений о судьбе пучка за точкой схлопывания. Машине были предложены уравнения, описывающие наиболее простую задачу: на плоскую границу вещества, о котором известно, что в нем наблюдается квадратичный эффект Керра, падает пучок света. Машина должна была определить, что будет происходить с ним по мере продвижения в глубь вещества.

Легко представить волнение, с которым исследователи ожидали результат, рождавшийся в электронных недрах вычислительной машины БЭСМ-6.

Проработав положенное время, машина сообщила: при этих условиях волноводного режима нет. За точкой схлопывания образуется некоторое число фокусов — областей с очень высокой концентрацией энергии и чрезвычайно малыми размерами.

Ответ в корне расходился не только со всеми вариантами существующих теорий, но и противоречил всем известным экспериментальным данным!

Было от чего прийти в уныние. Ведь они надеялись получить строгую и надежную картину перехода от постепенной самофокусировки через точку схлопывания к тонкой нити. Но ошибки не было. Уравнения верны, и машина сработала правильно.

Тогда они предложили машине вторую задачу, точнее соответствующую условиям большинства опытов. Перед попаданием в нелинейную среду пучок света предварительно проходит собирающую линзу. Машина решила и эти уравнения.

Ответ был тем же. Никакой нити. Цепочка отдельных фокусов.

В чем же дело? Может, постановка задачи в чем-то не соответствует реальности? Возможно, цепочка фокусов результат того, что из всего многообразия явлений при расчете учитывался только эффект Керра? Вполне вероятно и такое предположение — возникновение тонких нитей вызвано не эффектом Керра, а каким-то другим процессом.

Уравнения были усложнены. Теперь они отражали и действие вынужденного комбинационного рассеяния. Явления хорошо изученного, проявляющегося особенно сильно при больших интенсивностях света и известного как одна из причин самофокусировки.

Снова часы ожидания перед машиной. И новый ответ. Многофокусная структура должна существовать! Учет вынужденного комбинационного рассеяния приводит только к изменению численных величин. Узкого канала не возникает и в этом случае.

Казалось, оставался единственный путь. Перебирать один за другим все эффекты, способные привести к формированию тонких каналов. Записывать все новые, вероятно все более сложные, уравнения. И уповать на мощь БЭСМ-6. Возможно, что будет обнаружен эффект, ответственный за волноводное распространение света, за образование тонких, ярко светящихся нитей.

Нужна мощная интуиция для того, чтобы избрать другой путь. Отвергнуть очевидность многочисленных опытов. Отказаться от обаяния общепризнанных теорий. Сойти с проторенной тропы.

Прохоров и Луговой решили по-новому взглянуть на ответы машины. Не как на ошибку. Не как на результат неверного выбора исходных физических данных. А как на правильный вывод, соответствующий слишком упрощенно поставленной задаче. Ведь гигантский импульс лазера длится мгновение, точнее — десятки наносекунд, проще — сотые части от миллионной доли секунды. А они предлагали машине задачи, в которых пучки света действуют непрерывно с постоянной мощностью. И в зависимости от этой мощности получали различные расстояния до множества фокусов.

Вот где причина! Во время гигантской вспышки лазера мощность света меняется от нуля до огромной величины. Расстояния до фокусов не могут при этом быть постоянными. Они должны изменяться вместе с увеличением мощности. Фокусы должны

перемещаться!

Бегущие фокусы?

Да, бегущие фокусы. Вот разгадка тайны. Может быть, они бегут так быстро, что и для глаза, и для приборов они сливаются в яркую непрерывную нить?

Новые сложные расчеты оправдали надежды. Да, конечно, фокусы движутся! При условиях, характерных для большинства экспериментов, выполненных в различных лабораториях, фокусы летят со скоростью, близкой к миллиарду сантиметров в секунду. Скорость, всего в тридцать раз меньшая, чем скорость света!

Не мудрено, что траектория их движения выглядит как яркая светящаяся нить.

Теперь слово опять должно быть предоставлено эксперименту. Но эксперименту, поставленному в полном соответствии с условиями, для которых Прохорову и его сотрудникам удалось сформулировать задачу и выполнить соответствующие расчеты.

Первое сообщение о том, что наблюдаемые сбоку тонкие световые нити представляют собой след движущихся фокусов, явилось плодом совместной работы сотрудника Прохорова В.В. Коробкина и А.И. Аллока, выполненной в США, где Коробкин работал в течение нескольких месяцев. Затем М.Т. Лой и И.Р. Шен сообщили, что в результате самых тщательных исследований, выполненных в соответствии с условиями теории Прохорова и его сотрудников, они не обнаружили волноводного распространения света, но наблюдали движущиеся фокусы. Наконец, Прохоров с возвратившимся домой Коробкиным, Р.В. Серовым и М.Я. Щелевым не только наблюдали движущиеся фокусы, но и измерили их скорость. Она хорошо совпадала с предсказаниями теории.

Казалось, достаточно. Но Прохоров и Луговой не прекратили работы. Вместе с А.А. Абрамовым они доказали, что не только гигантские импульсы, но и в тысячу раз более короткие импульсы, те, которые принято называть сверхкороткими, тоже образуют движущиеся фокусы.

Подведем итоги. Твердо установлено теоретически и экспериментально, что мощный лазерный импульс, падающий на вещество, в котором возможен эффект Керра, самофокусируется. В результате возникает цепочка фокусов, чрезвычайно быстро движущихся по направлению к лазеру.

А как же тонкие нити? Как самоканализация света и его волноводное распространение, предсказанные Аскарьяном? Что делать с многочисленными теориями маститых авторов? Как относиться ко всем экспериментам, подтвердившим эти теории?

Не мне решать такие проблемы. Ведь факты — упрямая вещь. Но важно и толкование фактов.

Бегущие фокусы стали объективной реальностью. Они существуют, и условия их существования точно установлены.

Ясно и то, что теория волноводного распространения света еще не завершена. Слабые места ее известны. Не исключено, что и расчеты, аналогичные проведенным Дашко, Луговым и Прохоровым, выполненные для более сложных условий, соответствующих большинству прежних опытов, приведут к нитям или множеству нитей, а не к движущимся фокусам, соответствующим более простым условиям.

История еще не закончена. Невозможно предсказать, кто и где сделает следующий, решающий шаг. Но не сомневаюсь, что это будет человек или группа людей, столь же бестрепетно критикующих общепринятые теории, как Аскарьян и Луговой, обладающих чувством нового и глубокой интуицией Прохорова. Словом, то будут люди, не боящиеся идти против течения.

Глава VI. Качели

Лазер рождает лазер

Наши недостатки лишь продолжение наших достоинств. Как часто приходится сталкиваться с этим будничным вариантом великого закона единства противоположностей. Сфера действия его безгранична. А сила состоит в том, что в нем заключена возможность бесконечного развития. Ибо если достоинства неотделимы от недостатков, то и в недостатках заключены скрытые достоинства. Нужно лишь суметь обнаружить их и развить.

Поделиться с друзьями: