Кто изобрел современную физику? От маятника Галилея до квантовой гравитации
Шрифт:
Обсуждался вопрос, как измерить электромагнитное поле в точке.
До квантовой эры ответили бы, что надо поместить малый пробный заряд — скажем, электрон — в данную точку и измерить скорость, приобретенную им за малое время. Поле измеряется тем точнее, чем точнее измерены координата и скорость заряда и чем меньше время измерения.
Этот рецепт, однако, невыполним в силу квантовой теории, в которой соотношение неопределенностей ограничивает совместную точность координаты частицы x и ее скорости V, точнее, импульса p = mV:
x . p > h.
Физический смысл этого соотношения можно понять, считая, что положение электрона измеряют, освещая его светом с длиной волны = x.
Помимо этих h– ограничений точности, действуют и c– ограничения. Чтобы измерять положение электрона со все большей точностью, надо уменьшать длину волны освещающего света. При этом импульс отдачи электрона породит дополнительное поле, искажая само измеряемое поле. А если энергия фотона превысит энергию покоя электрона E=mc2, то и вовсе может родиться новый электрон, неотличимый от исходного. В результате неопределенность измерения поля никак не уменьшить до нуля. Такого рода рассуждения привели Ландау к выводу, что точность измерения поля в точке принципиально ограничена. Значит, «поле в точке» неизмеримо, само понятие неопределимо и не имеет права на существование. А вместе с ним и надежды на применимость квантовой механики к c– теории, какой была электродинамика. Отсюда Ландау сделал вывод о том, что подлинная ch– теория потребует каких-то совершенно новых понятий: «В правильной релятивистской квантовой теории, которая пока не существует, не будет ни физических величин, ни измерений в смысле квантовой механики».
Слабое место этих рассуждений Бор увидел в том, что предполагалось измерять поле электроном, как точечным зарядом. Электрон же — не точечная частица, а… толком не известно что. И свойства электрона, его заряд и масса при всей важности их надежно измеренных значений не входят в формулировку электродинамики Максвелла и, значит, не могут претендовать на особую роль в квантовой электродинамике.
Расхождение Бора с Ландау касалось понятия «возможного эксперимента» и — вопреки экспериментальному звучанию — было почти философским. Бор считал, что надо обсуждать измерение поля в конечной области пространства с заданной точностью, а затем уменьшать размер области. Исходил он из того, что разрешено все не запрещенное теорией и что измерительный прибор должен быть макроскопическим, как и сам экспериментатор. Соответствующий эксперимент Бор описал детально, и слабонервным теоретикам лучше не смотреть на многостраничные описания пробных тел произвольной массы и заряда, способных вдвигаться одно в другое, бесчисленных маленьких зеркал у каждой части пробного тела, жестких креплений к твердому каркасу, гибких магнитных нитей и тому подобное. Однако то был мысленный эксперимент — способ анализа самой теории.
Попросту говоря, мысленный экспериментатор, действующий в квантовой теории электромагнетизма, имеет две «ручки» управления: одна меняет заряд пробного тела, другая — его массу. А поскольку теория электромагнетизма никак не ограничивает отношение массы и заряда, экспериментатор может выбирать эти величины произвольно.
Простой ch– довод в поддержку этой позиции: если бы измерению поля препятствовали какие-то фундаментальные факторы, то некий характерный масштаб ограничивал бы размер области пространства, в которой такое измерение еще возможно. Однако в основе квантовой электродинамики лишь две константы — c и h, из которых нельзя составить никакую длину.
Вполне вероятно, что именно о ch– физике говорили в мае 1934 года Ландау, Бор, Розенфельд и Бронштейн, когда газетный фотограф застал их за одним столом во время конференции в Харькове. Все четверо принимали близко к сердцу проблемы ch– теории, еще не созданной, но уже названной «Релятивистской теорией квант». Переводя историю физики на юридический язык, можно сказать, что Ландау с Пайерлсом в 1931 году приговорили эту теорию к смерти — «Казнить! Нельзя помиловать», Бор с Розенфельдом в 1933-м ее полностью реабилитировали, а Бронштейн в 1934-м внятно объяснил, почему «Казнить нельзя, помиловать», но уточнил, что касается это только ch– теории электромагнетизма.
Впрочем, возможно, в той беседе 1934 года говорили не только о ch– теории. Ведь с 1931 года, когда Ландау поставил ch–
вопрос ребром, ситуация изменилась кардинально. Гордиев узел ch– проблем не пришлось разрубать. Большая его часть развязалась благодаря физикам-экспериментаторам. За считанные месяцы в физическую картину миру вошли аж целые три новые элементарные частицы. Вместо одной нейтральной частицы, заподозренной Паули, появились две: нейтрон и нейтрино. Открыли также первую античастицу — антиэлектрон, названный позитроном. Ранее такая частица, предсказанная теорией, казалась ее роковым дефектом, а теперь она стала триумфальным подтверждением.В этом клубке проблем для гравитации, казалось бы, места нет. В истории физики, однако, не раз бывало, что внешне очень непохожие явления оказывались в родстве. Галилей и Ньютон не поверили бы, что притяжение пушинок к натертому янтарю и взаимодействие магнитов имеют отношение друг к другу и к свету. Глубинное родство этих явлений выяснил лишь Максвелл.
Впрочем, теоретическую физику двигают вперед не красноречивые примеры из прошлого, а внутренняя логика настоящего в стремлении к будущему пониманию.
Матвей Бронштейн и проблема cGh– теории
В упомянутой ch– заметке Бронштейна 1934 года нет ни слова о гравитации, но в его мыслях она давно присутствовала, что и помогло ему увидеть «принципиальное различие между квантовой электродинамикой и квантовой теорией гравитационного поля». Так он написал в статье 1936 года.
Основной объем этой работы посвящен квантованию слабой гравитации, когда искривление пространства-времени очень мало. В этом приближении он получил два результата — не удивительные, но совершенно необходимые для здоровой теории, чтобы обеспечить преемственность научного знания. Представляя гравитационное взаимодействие материальных тел посредством «промежуточного агента — „гравитационных квантов“», он из cGh– теории слабого поля получил в неквантовом пределе эйнштейновский cG– закон гравитационного излучения, а в классическом пределе — Ньютонов G-закон гравитации.
Совершенно неожиданный результат, однако, Бронштейн получил, выйдя за пределы слабой гравитации. Построенная им квантовая теория слабой гравитации для такого выхода была бесполезна. Он воспользовался другим методом, хорошо им продуманным, — проанализировал измеримость величин, описывающих гравитацию, или, условно говоря, «гравитационное поле». И обнаружил, что, в отличие от ch– теории электромагнетизма, cGh– теорию гравитации уже не спасают ни исходное рассуждение Бора — Розенфельда, ни усовершенствованный им вариант. Дело в том, что у мысленного экспериментатора в гравитации нет двух независимых ручек для массы и заряда, а только одна: гравитационный заряд и инертная масса — это, по существу, одно и то же, что обнаружил еще Галилей.
Это отличие, как показал Бронштейн, в ситуации, когда важны и квантовые, и гравитационные эффекты, ведет к противоречию и требует
радикальной перестройки теории и, в частности, отказа от Римановой геометрии, оперирующей… принципиально не наблюдаемыми величинами — а может быть, и отказа от обычных представлений о пространстве и времени и замены их какими-то гораздо более глубокими и лишенными наглядности понятиями.
Разумеется, эти «гораздо более глубокие» понятия должны давать обычное пространство-время как приближенное, предельное описание. Но и с этой оговоркой предсказание Бронштейна требовало силы духа. Оно не только противоречило квантовым авторитетам Паули и Гейзенберга, заявившим, что квантовать гравитацию не труднее, чем электродинамику. Экспериментальные открытия «обезвредили» основные парадоксы теории, и теоретики, уставшие от пророчеств и ожидания революционных перемен, занялись решением насущных задач атомной и ядерной физики. А тут Бронштейн вновь провозглашает неизбежность радикальной перестройки?! В 1936 году это выглядело не столько смелым, сколько неприличным.
Такая перемена в научно-общественном настрое, вероятно, и побудила Бронштейна невольный пафос своего прогноза смягчить ироничной фразой «Wer's nicht glaubt, bezahlt einen Taler» («Кто этому не верит, с того талер»). Этими словами кончается сказка братьев Гримм, герой которой умудрился, с невероятными приключениями, выполнить невыполнимые задания принцессы, за что, разумеется, и получил ее в награду. (В 1936 году немецкий язык был главным языком мировой физики.)
Предыдущие пророчества говорили о соединении квантов и теории относительности в последовательной ch– теории. Бронштейн добавил к соединению гравитацию и говорил о cGh– теории. Большинство коллег смотрели скептически на такое добавление. У них был количественный резон: в мире атомов сила гравитации ничтожно мала по сравнению с другими. Знаменатель соответствующей дроби — астрономическое 40-значное число. А если так, зачем скрещивать кванты и гравитацию?!