Чтение онлайн

ЖАНРЫ

Квант. Эйнштейн, Бор и великий спор о природе реальности
Шрифт:

Эйнштейну потребовалось много времени, чтобы согласиться с тем, что мир состоит из атомов и что эти дискретные разорванные частички материи обладают энергией. Например, энергия газа — сумма энергий отдельных составляющих его атомов. Но это ни в коей мере не касалось света. Согласно теории электромагнетизма Максвелла, да и любой волновой теории, световые лучи распространяются непрерывно, охватывая все большую область пространства, наподобие волн, расходящихся из точки на поверхности пруда, в которую попал камень. Эйнштейн видел в этом глубокое формальное различие. Оно его беспокоило, но, с другой стороны, стимулировало желание всесторонне обдумать вопрос55. Он понял, что дихотомию между прерывностью материи и непрерывностью электромагнитной волны можно устранить, если предположить, что свет тоже состоит

из квантов56.

О квантах света Эйнштейн задумался после того, как перепроверил выведенную Планком формулу для спектра излучения абсолютно черного тела. Он согласился с тем, что эта формула верна, но, анализируя способ, которым она была получена, Эйнштейн заподозрил неладное. Планк должен был получить совсем иную формулу, однако он знал, какой эта формула должна быть, и построил свой вывод так, чтобы получить именно ее. Эйнштейн точно определил место, где Планк сбился с пути. В отчаянной попытке обосновать свое уравнение (которое, он знал, прекрасно согласуется с экспериментом) ему не удалось применить последовательно физические представления и методы расчета, имевшиеся в его распоряжении. Эйнштейну стало ясно, что если бы Планк это сделал, он получил бы уравнение, совершенно не согласующееся с экспериментом.

В июне 1900 года лорд Рэлей уже предложил формулу, которую должен был бы получить Планк, но тот либо не придал ей значения, либо вообще не заметил. Тогда он еще не верил в существование атомов и поэтому не мог согласиться с тем, что Рэлей использовал теорему о равнораспределении. Атомы могут двигаться только тремя способами: вверх и вниз, туда и сюда и из стороны в сторону. Говорят, что они обладают тремя “степенями свободы”. Энергия, которую атомы могут получать и накапливать, распределяется по степеням свободы. В дополнение к трем возможным движениям (трансляциям) молекуле, состоящей из двух и более атомов, позволено совершать еще три вращательных движения вокруг воображаемых осей, соединяющих атомы. Следовательно, степеней свободы имеется шесть. Согласно теореме о равнораспределении, энергия газа равномерно распределяется между молекулами, а затем делится поровну между всеми доступными молекуле движениями.

Рэлей использовал эту теорему, чтобы распределить энергию излучения абсолютно черного тела по различным длинам волн внутри полости. Это был пример безупречного использования физики Ньютона, Максвелла и Больцмана. При выводе была допущена несущественная численная ошибка, исправленная затем Джеймсом Джинсом. Получилось выражение, известное как закон Рэлея — Джинса. Но, согласно этой формуле, в ультрафиолетовой области спектра плотность излученной энергии становится бесконечно большой. Этот результат ознаменовал полное поражение классической физики. В 1911 году его назовут “ультрафиолетовой катастрофой”. Слава Богу, на самом деле катастрофы нет: ультрафиолетовое излучение сделало бы жизнь на Земле невозможной.

Эйнштейн самостоятельно вывел формулу Рэлея — Джинса. Он знал, что предсказываемое ею распределение излучения абсолютно черного тела противоречит экспериментальным данным и приводит к абсурдному результату в ультрафиолетовой области спектра. Поскольку закон Рэлея — Джинса правильно описывает излучение абсолютно черного тела только при больших длинах волн (очень низких частотах), за отправную точку Эйнштейн взял полученный прежде закон излучения Вина. Это был единственный надежный путь, несмотря на то, что закон Вина справедлив только для коротких длин волн (высокие частоты) и нарушается при больших длинах волн (низкие частоты) в инфракрасной области. Однако у этого подхода были свои преимущества. У Эйнштейна не было сомнений, что закон Вина справедлив и верно описывает по крайней мере часть спектра излучения абсолютно черного тела. Рассмотрением этой области спектра и собирался ограничиться Эйнштейн.

План Эйнштейна был прост и остроумен. Газ представляет собой набор частиц. При термодинамическом равновесии именно свойства этих частиц определяют, например, давление газа при данной температуре. Если имеется сходство между свойствами излучения абсолютно черного тела и частицами газа, то можно утверждать, что и само электромагнитное излучение похоже на частицы. Эйнштейн начал с рассмотрения воображаемого пустого абсолютно черного тела. Но, в отличие от Планка, он поместил туда газ частиц и электронов. Правда, атомы стенок полости тоже содержат электроны. При нагревании абсолютно черного тела эти электроны совершают колебания в широком интервале частот, что приводит к испусканию и поглощению излучения стенками

полости. Вскоре внутренняя полость абсолютно черного тела оказывается заполненной быстро двигающимися частицами и электронами, и осциллирующие электроны излучают энергию. В конце концов, когда полость и наполняющие ее частицы будут иметь одну и ту же температуру T, достигается состояние термодинамического равновесия.

Первый закон термодинамики (закон сохранения энергии) можно записать так, чтобы связать энтропию системы с ее энергией, температурой и объемом. Кроме закона сохранения энергии, Эйнштейн использовал закон Вина, а также идеи Больцмана, стремясь выяснить, как энтропия излучения абсолютно черного тела зависит от занимаемого им объема, “не используя какую-либо модель для описания испускания и распространения излучения”57. Получилась формула, выглядевшая точно так же, как формула, связывающая энтропию газа, состоящего из атомов, с его объемом. Излучение абсолютно черного тела подчинялось тем же закономерностям, как если бы оно состояло из отдельных, похожих на частицы порций энергии.

Для открытия кванта света Эйнштейну не нужен был ни закон излучения Планка, ни его метод. Не повторяя путь Планка, Эйнштейн получил немного другую формулу. Но и его формула содержала ту же информацию: равенство E = h справедливо. Энергия квантуется и может поглощаться или испускаться только порциями размером h. Чтобы его воображаемые осцилляторы правильно воспроизводили спектр излучения абсолютно черного тела, Планк квантовал только испускание и поглощение электромагнитного излучения, а Эйнштейн квантовал электромагнитное излучение и, следовательно, сам свет.

Хотя Эйнштейн показал, что есть случаи, когда электромагнитное излучение ведет себя как частички газа, он понимал, что протащил квант света контрабандой, введя его по аналогии. Чтобы убедить других в ценности новой “эвристической точки зрения” на природу света, он использовал ее для объяснения другого малопонятного явления58.

Впервые фотоэлектрический эффект наблюдал немецкий физик Генрих Герц в 1887 году. Он ставил эксперименты, целью которых была демонстрация существования электромагнитных волн, и случайно заметил, что разряд между двумя металлическими сферами становится ярче, если их облучать ультрафиолетовым светом. Объяснить эффект он не смог, хотя потратил несколько месяцев на изучение “совершенно нового удивительного явления”, которое, как он ошибочно считал, связано только с ультрафиолетовым излучением59.

“Было бы лучше, если бы оно [явление] было менее загадочным, — признавался Герц, — однако есть надежда, что когда ответ на эту загадку будет найден, мы сможем понять много больше нового, чем в случае простого решения”60. К сожалению, Герц не дожил до того момента, когда исполнилось его пророчество. Он умер в 1894 году в возрасте всего тридцати шести лет.

Атмосфера таинственности, окружавшая фотоэффект, еще сильнее сгустилась в 1902 году. Бывший ассистент Герца Филипп фон Ленард, поместив две металлические пластинки в стеклянную трубку, из которой был откачан воздух, показал, что этот эффект имеет место и в вакууме. Присоединив проволочки, отходящие от пластинок, к батарее, он обнаружил, что если одну из пластинок осветить ультрафиолетовым светом, в системе начинает течь ток. Фотоэлектрический эффект можно было объяснить эмиссией электронов с освещенной металлической поверхности. Направленный на пластину ультрафиолетовый свет может привести к такому повышению энергии электронов, что они, покинув пластинку, преодолевают расстояние до другой пластины и замыкают контур, вызывая “фотоэлектрический ток”. Однако наблюдавшаяся Ленардом картина противоречила устоявшимся физическим представлениям. Можно сказать, что именно он вывел на сцену Эйнштейна и его квант света.

Считалось, что если делать свет ярче, то есть увеличивать его интенсивность, то число электронов, вылетающих с поверхности пластины, останется прежним, но их энергия будет больше. Ленард же обнаружил, что это совсем не так: увеличивается число электронов, а энергия каждого из них остается прежней. Полученное Эйнштейном квантовое решение этой загадки было простым и элегантным: если свет состоит из квантов, то при увеличении интенсивности светового луча увеличивается и число входящих в него квантов. Когда луч большей интенсивности ударяется о пластинку, большее число квантов приводит к увеличению числа испускаемых электронов.

Поделиться с друзьями: