Чтение онлайн

ЖАНРЫ

Квант. Эйнштейн, Бор и великий спор о природе реальности
Шрифт:

Стоячие волны легко возбудить в закрепленных с обеих сторон струнах, например скрипичных или гитарных. Когда мы дергаем струну, возбуждается много стоячих волн, состоящих из целого числа половин длин волн. Самая длинная стоячая волна — та, у которой длина волны в два раза больше длины струны. Следующая стоячая волна состоит из двух отрезков по половине длины волны, так что полная длина волны равна длине струны. Затем имеется стоячая волна, состоящая из трех полудлин волн, и так далее. Возбуждаются только такие стоячие волны. Каждая из них характеризуется собственной энергией. Значит, поскольку частота и длина волны связаны, если тронуть струну гитары, она будет колебаться только с определенными частотами, начиная с основного тона, то есть с самой низкой частоты.

Рис. 9.

Стоячие волны в струне, закрепленной с обоих концов.

Де Бройль понимал, что условие “целых чисел” оставляет только те электронные орбиты, длины окружности которых допускают образование стоячих волн. В отличие от музыкальных инструментов, такие стоячие электронные волны связаны не с концами струны, а с условием периодичности. Они образуются тогда, когда на длине окружности орбиты можно поместить целое число длин волны. Если это не получается сделать точно, не может быть и стоячей волны, а, следовательно, стационарной орбиты.

Рис. 10. Стоячие электронные волны в квантовом атоме.

Если электрон не частица, вращающаяся вокруг ядра, а стоячая волна, то он не ускоряется, и, следовательно, нет постоянного излучения, в результате которого электрон теряет энергию и падает на ядро, разрушая атом. Корпускулярно-волновой дуализм де Бройля стал обоснованием модели Бора, призванной спасти квантовый атом. Сделав вычисления, де Бройль обнаружил, что п, главное квантовое число Бора, соответствует именно таким орбитам вокруг ядра атома водорода, на которых может существовать стоячая электронная волна. Именно поэтому в модели Бора все другие орбиты запрещены.

Де Бройль изложил свои соображения о наличии у всех частиц дуальных корпускулярно-волновых свойств в трех коротких заметках, увидевших свет осенью 1923 года. Но тогда не было ясности в том, каков характер связи между похожими на бильярдные шары частицами и связанными с ними “фиктивными волнами”. Имел ли в виду де Бройль, что электрон сродни серфингисту, поймавшему волну? Позднее было установлено, что такая интерпретация не работает. Электроны, как и все другие частицы, ведут себя точно как фотоны: они одновременно и волны, и частицы.

Весной 1923 года де Бройль представил развернутое изложение своих идей на соискание степени доктора философии. Защита должна была состояться только 25 ноября из-за формальностей, связанных с приемом диссертаций к защите, и, кроме того, чтобы дать возможность экзаменаторам ознакомиться с нею. Трое из четырех экзаменаторов были профессорами Сорбонны: Жан Перрен, эксперименты которого подтвердили теорию броуновского движения Эйнштейна; Шарль Моген, известный физик, изучавший свойства кристаллов; знаменитый математик Эли Картан. Последним членом квартета был не преподававший в Сорбонне Поль Ланжевен. Он был единственным из экзаменаторов, разбиравшимся в квантовой физике и теории относительности. Прежде чем официально представить диссертацию к защите, де Бройль попросил Ланжевена оценить его выводы. Ланжевен согласился. Позднее он сказал коллеге: “Уношу с собой диссертацию младшего братца. Мне она кажется несколько крамольной”13.

Идеи Луи де Бройля казались фантастикой, но Ланжевен не отверг их сразу. Он понял, что должен с кем-нибудь посоветоваться. Ланжевен помнил, как в 1909 году Эйнштейн публично заявил: в будущем исследование излучения позволит обнаружить синтез частиц и волн. Эксперименты Комптона убедили почти всех, что в отношении света Эйнштейн был прав. Действительно, при столкновениях с электроном свет ведет себя как частица. Де Бройль предложил такого же рода синтез, корпускулярно-волновой дуализм, для всех частиц. Он даже привел формулу, связывающую длину волны “частицы” с ее импульсом p: = h/p, где h —

постоянная Планка. Ланжевен попросил у герцога-физика второй экземпляр диссертации и отослал его Эйнштейну. “Он приподнял краешек завесы, скрывающей огромную тайну”, — ответил Эйнштейн14.

Для Ланжевена и других экзаменаторов было достаточно мнения Эйнштейна. Они поздравили де Бройля с тем, что он “предпринял мастерскую попытку преодолеть затруднения, возникшие перед физиками”15. Моген позднее признался, что “в то время не верил в физическую реальность волн, связанных с частичками материи”16. Единственное, в чем был уверен Перрен, так это в том, что де Бройль — “очень способный молодой человек”17. При поддержке Эйнштейна де Бройль, которому исполнилось тридцать два года, получил право титуловаться не просто герцогом Луи Виктором Пьером Раймоном де Бройлем, но и доктором Луи де Бройлем.

Одно дело высказать идею, но как ее проверить? Уже в сентябре 1923 года де Бройль понял, что если материя обладает волновыми свойствами, то пучок электронов должен распространяться как луч света: должна иметь место дифракция. В одной из коротких статей, опубликованных в том году, он предсказал, что “эффекты дифракции должны наблюдаться, когда группа электронов проходит через маленькое отверстие”18. Де Бройль безуспешно пытался убедить кого-либо из опытных экспериментаторов, работавших в частной лаборатории его брата, проверить это утверждение. Занятые другими делами, они считали, что такой эксперимент очень трудно поставить. Луи не настаивал, чувствуя, что он и так в долгу перед Морисом, которого все время отвлекал “разговорами о важности и неоспоримости дуализма корпускулярных и волновых свойств излучения”19.

Однако вскоре молодой физик из Геттенгенского университета Вальтер Эльзассер понял, что если де Бройль прав, то эффекты дифракции должны наблюдаться просто при соударении пучка электронов с хорошим кристаллом. В этом случае расстояние между соседними атомами настолько мало, что должен проявляться волновой характер частицы размером с электрон. Эйнштейн, услышав, какой эксперимент предлагает поставить Эльзассер, сказал: “Молодой человек, вы напали на золотую жилу”20. Это была не просто золотая жила, а нечто более ценное — Нобелевская премия. Но, как и во время любой золотой лихорадки, надо было действовать быстро. Эльзассер спешил, однако два других ученых обогнали его — и взяли премию сами.

Тридцатичетырехлетний Клинтон Дэвиссон работал в “Вестерн электрик компани”, позднее ставшей компанией “Белл телефон лабораториз”. Он занимался изучением соударения пучков электронов с мишенями из различных материалов. Однажды в апреле 1925 случилось нечто странное. В лаборатории взорвалась бутылка со сжиженным воздухом и повредила вакуумную трубку, в которую была помещена никелевая мишень. Воздух вызвал коррозию никеля. С помощью отжига Дэвиссон очистил никель. Вместо мелких никелевых кристалликов, первоначально составлявших образец, образовалось несколько больших кристаллов. Они и стали причиной дифракции электронов. Продолжив эксперименты после отжига, Дэвиссон вскоре обратил внимание, что картина рассеяния электронов изменилась. Не подозревая, что наблюдал дифракцию электронов, он опубликовал результаты этих экспериментов.

“Просто невозможно себе представить, что ровно через месяц мы будем в Оксфорде, не так ли? Лотти, дорогая! Мы чудесно проведем время. Это будет наш второй медовый месяц, еще прекраснее первого”, — написал Дэвиссон жене в июле 1926 года21. Они оставили детей на попечение родственников и, прежде чем направиться в Оксфорд на конференцию Британской ассоциации содействия развитию науки, поездили по Англии. В отдыхе они очень нуждались. Только приехав в Оксфорд, Дэвиссон с удивлением узнал, что многие физики верят, что его эксперименты подтверждают идею некоего французского герцога. Он никогда не слышал ни о де Бройле, ни о его идее распространить представление о корпускулярно-волновом дуализме на всю материю. И в этом Дэвиссон не был одинок.

Поделиться с друзьями: