Чтение онлайн

ЖАНРЫ

Квант. Эйнштейн, Бор и великий спор о природе реальности
Шрифт:

Как-то Гейзенберг обсуждал с приятелем трудности, возникающие в связи с понятием “орбита электрона”. Собеседник утверждал, что в принципе можно построить микроскоп, позволяющий проследить путь электрона внутри атома. Но теперь стало ясно, что такой эксперимент исключается, поскольку “ни один, даже лучший микроскоп не может выйти за рамки принципа неопределенности”34. Гейзенбергу оставалось только доказать это теоретически и показать, что определить точно положение движущегося электрона нельзя.

“Увидеть” электрон можно лишь в специальный микроскоп. В обычном микроскопе объект освещается видимым светом, а затем отраженный свет фокусируется и получается изображение. Длина волны видимого света гораздо больше размера электрона, поэтому видимый свет нельзя использовать для определения его точного положения. Световая волна плещется над ним, как морская волна над галькой на берегу. Чтобы засечь местонахождение электрона, требуется микроскоп, использующий -лучи: “свет” очень малой длины волны и большой

частоты. В 1923 году Артур Комптон исследовал рассеяние рентгеновских лучей на электронах и получил неоспоримое свидетельство существования квантов света Эйнштейна. Гейзенберг представлял себе, что, как при столкновении двух бильярдных шаров, -квант ударяет по электрону — и электрон отскакивает, а -квант рассеивается в микроскоп, создавая изображение.

Однако в этом случае при столкновении с -квантом имеет место скорее резкий удар, а не плавная передача импульса электрону. Поскольку импульс тела есть его масса, помноженная на скорость, любое изменение скорости приводит к соответствующему изменению импульса35. Когда фотон ударяется об электрон, его скорость резко меняется. Единственный способ сделать скачок импульса электрона меньше — уменьшить энергию фотона и, следовательно, уменьшить влияние столкновения. Это влечет за собой необходимость использовать свет большей длины волны и меньшей частоты. Но такое изменение длины волны означает, что больше невозможно “засечь” точное местонахождение электрона. Чем точнее измеряется координата электрона, тем менее определенно можно измерить его импульс, и наоборот36.

Гейзенберг показал, что если p и q — “неточности” или “неопределенности” импульса и координаты, то p, помноженное на q, всегда больше или равно h/2: pq >= h/2, где h — постоянная Планка37. Эта формула является выражением принципа неопределенности или “неточности знания при одновременном измерении” координаты и импульса. Гейзенберг обнаружил еще одно “соотношение неопределенности”, в которое входит другая пара так называемых сопряженных координат: энергия и время. Если E и t — неопределенности, с точностью до которых могут быть измерены энергия системы E и время t, за которое происходит измерение, то Et >= h/2.

Вначале бытовало мнение, что принцип неопределенности — это результат технологического несовершенства используемой в эксперименте аппаратуры. Считалось, что если усовершенствовать приборы, то неопределенность исчезнет. Это непонимание возникло из-за того, что Гейзенберг, желая подчеркнуть значение принципа неопределенности, использовал мысленные эксперименты. Но мысленные эксперименты — это такие эксперименты, в которых совершенное оборудование работает в идеальных условиях. Неопределенность, открытая Гейзенбергом, — сущность реальности. Он утверждал, что в атомном мире увеличить точность наблюдения сверх предела, установленного соотношениями неопределенности и значением постоянной Планка, нельзя. Возможно, слово “непознаваемость” лучше “неточности” и “неопределенности” подходит для определения замечательного открытия Гейзенберга. Он считал, что сам акт точного измерения координаты электрона делает невозможным точное измерение его импульса в тот же момент времени. Для него было очевидно, почему это происходит. Когда фотон, с помощью которого можно “увидеть” электрон и определить его местоположение, ударяет по электрону, происходит непредсказуемое возмущение электрона. Именно это неустранимое возмущение в процессе измерения Гейзенберг считал источником неопределенности38.

Гейзенберг был уверен, что такое объяснение подкреплено фундаментальным уравнением квантовой механики: pqqp = – ih/2, где p и q — это импульс и координата частицы. Присущая природе неопределенность является причиной некоммутативности — того факта, что произведение x q не равно x p. Если за экспериментом по определению положения электрона следует эксперимент, в котором определяется его скорость (и, следовательно, импульс), то получатся два точно определенных числа. Перемножив их, получим некоторое число А. Теперь повторим эти эксперименты в обратном порядке, измерив сначала скорость электрона, а затем его координату. Получится совершенно другой результат — число В. В каждом из случаев первое измерение вызывает возмущение, влияющее на результат второго измерения. Если бы возмущений, в каждом эксперименте разных, не было, то p x q равнялось бы x p: тогда

разность pq — qp равнялась бы нулю и не было бы ни неопределенности, ни квантового мира.

Гейзенберг пришел в восторг, увидев, что все детали пазла точно подошли друг к другу. Его версия квантовой механики строилась из некоммутирующих между собой матриц, представляющих такие наблюдаемые величины, как координата и импульс. С самого начала, с тех пор, как он обнаружил это странное правило, согласно которому порядок перемножения двух наборов чисел оказывается существенной частью математического аппарата новой механики, стоящую за этим правилом физику покрывала завеса тайны. Теперь ему удалось эту завесу приподнять. Согласно Гейзенбергу, только “неопределенность, выраженная неравенством pq >= h/2, делает возможным существование равенства” pq — qp =ih/239. Он утверждал, что только благодаря неопределенности “его выполнение становится возможным без требования изменить физический смысл величин p и q40.

Принцип неопределенности выявил фундаментальное различие между квантовой и классической механикой. В классической физике координата частицы и ее импульс в принципе могут быть измерены одновременно с любой степенью точности. Если в каждый момент времени положение и скорость тела точно известны, можно точно указать путь, по которому тело двигалось в прошлом, где оно находится сейчас и по какому пути будет двигаться дальше. Эти устоявшиеся понятия повседневной физики “можно точно так же определить и для квантовых процессов”, утверждал Гейзенберг41. Однако их ограниченность становится очевидной, если попытаться измерить одновременно две сопряженные величины: координату и импульс или энергию и время.

Гейзенберг считал принцип неопределенности мостом, связывающим наблюдение того, что представляет собой след электрона в камере Вильсона, и квантовую механику. Построив этот мост между теорией и экспериментом, он предположил, что “в природе могут иметь место только те экспериментальные ситуации, которые можно описать с помощью математического формализма” квантовой механики42. Гейзенберг был убежден, что если квантовая механика говорит, что такого быть не может, то это действительно так. “Физическая интерпретация квантовой механики все еще полна внутренних противоречий, — написал он в статье, посвященной принципу неопределенности, — которые проявляются в спорах о сопоставлении непрерывности и разрывов, частиц и волн”43.

Сложилась неприятная ситуация. Оказалось, что понятия, лежащие в основании классической физики еще со времен Ньютона, на атомном уровне “не совсем точно подходят природе”44. Гейзенберг верил, что при более аккуратном анализе таких понятий, как координата, импульс, скорость и траектория электрона или атома, можно будет избавиться от “очевидных и сейчас противоречий в физических интерпретациях квантовой механики”45.

Что понимается под “координатой” в квантовом мире? На этот вопрос Гейзенберг отвечал так: это результат специально поставленного эксперимента для измерения, скажем, “положения электрона” в пространстве в заданный момент времени, “иначе это слово вообще не имеет смысла”46. Для него не существовало электрона со строго определенной координатой или строго определенным импульсом до их измерения в эксперименте. Измерение координаты электрона создает “электрон с координатой”, а измерение его импульса — “электрон с импульсом”. Сама идея существования электрона с определенной координатой или импульсом не имеет права на существование до того, как выполнен эксперимент по измерению этой величины. Гейзенберг использовал восходящий к Эрнсту Маху подход, где данное понятие определяется через его измерение. Философы называют его операционализмом. Но в данном случае это было нечто большее, чем переопределение старых понятий.

Не забывая о треке электрона в камере Вильсона, Гейзенберг решил рассмотреть такое понятие, как “траектория электрона”. Траектория — это непрерывная, без изломов, последовательность точек, в которых оказывается электрон, двигающийся в пространстве и во времени. В соответствии с новыми представлениями наблюдение траектории включает в себя измерение координат электрона в каждой последующей точке. Однако для измерения координаты электрона надо, чтобы он столкнулся с -квантом, а это приводит к возмущению электрона, что не позволяет достоверно предсказать его траекторию. В случае электрона в атоме, “вращающегося” по орбите вокруг ядра, у -кванта достаточно энергии, чтобы выбить электрон из атома. Это позволяет измерить только одну точку на “орбите”, и только она известна. Поскольку принцип неопределенности запрещает точное измерение одновременно и координаты, и скорости, определяющих траекторию электрона или его орбиту в атоме, значит, ни траекторий, ни орбит просто не существует. Единственное, что известно достоверно, утверждал Гейзенберг, это одна точка на траектории, и “поэтому здесь слово ‘траектория’ не имеет поддающегося определению значения”47. Само измерение определяет то, что измеряется.

Поделиться с друзьями: