Квантовое превосходство: Революция в вычислениях, которая изменит всё
Шрифт:
Не исключено, что квантовые компьютеры сумеют помочь нам в создании более эффективного искусственного фотосинтеза или, может быть, совершенно новых способов преобразования энергии солнечного света. Возможно, от этого будут зависеть в будущем наши продовольственные ресурсы.
Рождение квантовой медицины
Итак, квантовые компьютеры способны восстанавливать окружающую среду и растительность. Но, помимо этого, они могли бы лечить больных и умирающих. Квантовые компьютеры в будущем не только одновременно проанализируют эффективность миллионов потенциальных лекарств быстрее любого традиционного компьютера, но и разберутся в природе самой болезни.
Возможно, квантовые
Двумя величайшими открытиями в истории медицины можно считать антибиотики и вакцины. Однако новые антибиотики приходится искать в основном методом проб и ошибок, без точного понимания, как они работают на молекулярном уровне, а вакцины лишь стимулируют человеческий организм на производство химических веществ, которые должны атаковать вторгшийся вирус. В обоих случаях конкретные молекулярные механизмы до сих пор не раскрыты, а квантовые компьютеры, возможно, сумеют подсказать нам, как разрабатывать более качественные вакцины и антибиотики.
Если говорить о понимании нашего организма, то первым гигантским шагом в этом направлении стал проект «Геном человека», в ходе работы над которым был составлен список всех 3 млрд пар оснований и 20 000 генов, входящих в ДНК человека. Но это только начало. Проблема в том, что цифровые компьютеры используются в основном для поиска по обширным базам известных генетически кодов, но эти устройства бессильны, если дело доходит до точного объяснения, как ДНК и белки творят свои чудеса внутри организма. Белки представляют собой сложные объекты, часто состоящие из тысяч атомов, которые вполне конкретными, но необъяснимыми способами складываются в маленький шарик, когда творят свое молекулярное волшебство. На самом фундаментальном уровне вся жизнь является квантово-механической и потому недосягаема для цифровых компьютеров.
Но квантовые компьютеры помогут нам перейти к следующему этапу, на котором мы расшифруем эти механизмы на молекулярном уровне. Они расскажут нам, как все это работает, что позволит ученым создавать новые генетические возможности, новые средства и методы борьбы с неизлечимыми ранее болезнями.
К примеру, фармацевтические корпорации, включая ProteinQure, Digital Health 150, Merck и Biogen, уже организуют исследовательские центры, чтобы разобраться в том, как квантовые компьютеры повлияют на анализ лекарств.
Ученые поражены тем, насколько обширный арсенал молекулярных механизмов создала мать-природа, чтобы сделать возможной жизнь на Земле. Но эти механизмы – побочный продукт случая и бессистемного естественного отбора, действовавшего на протяжении миллиардов лет. Вот почему мы до сих пор страдаем от некоторых неизлечимых болезней и процесса старения. Как только мы поймем, как работают эти молекулярные механизмы, мы сможем использовать квантовые компьютеры для их улучшения или создания новых их вариантов.
Например, если говорить о ДНК-геномике, мы можем использовать компьютеры для распознавания таких генов, как BRCA1 и BRCA2, которые с достаточно высокой вероятностью способны привести к раку груди. Но цифровые компьютеры не в состоянии определить точно, как эти дефектные гены вызывают рак. К тому же они бессильны остановить рак, если он уже начал распространяться по телу. Однако квантовые компьютеры, расшифровав молекулярные хитросплетения нашей иммунной системы, сумеют, возможно, создать новые лекарства и способы лечения для борьбы с этими болезнями.
Еще один пример – болезнь Альцгеймера, которая, как считают некоторые, станет «болезнью века» по
мере старения населения Земли. При помощи цифровых компьютеров можно показать, что с этой болезнью связаны мутации определенных генов, таких как ApoE4. Но цифровые компьютеры не в силах объяснить, почему это так.Одна из основных теорий на этот счет состоит в том, что болезнь Альцгеймера вызывается прионами – определенными неправильно свернутыми амилоидными белками в мозге. Когда такая молекула-мутант сталкивается с другой, нормальной молекулой белка, она заставляет эту молекулу тоже свернуться неправильно. Таким образом, болезнь может передаваться при контакте, хотя ни бактерии, ни вирусы при этом не задействуются. Подозревают, что именно прионы-перерожденцы стоят, возможно, за болезнями Альцгеймера и Паркинсона, боковым амиотрофическим склерозом и целым рядом других неизлечимых болезней, поражающих главным образом пожилых людей.
Так что проблема фолдинга (укладки) белка – одна из важнейших неисследованных областей биологии. По сути дела, в ней, возможно, и заключена тайна жизни как таковой. Но как в точности складывается белковая молекула, не под силу разобраться ни одному традиционному компьютеру. Однако квантовые компьютеры смогут открыть для нас новые способы нейтрализации аномальных белков и снабдить новыми методами лечения.
Кроме того, упоминавшееся выше слияние ИИ и квантовых компьютеров, вполне вероятно, окажется будущим медицины. ИИ-программы, такие как AlphaFold, уже смогли составить подробные схемы атомной структуры 350 000 – поразительное количество! – различных типов белков, включая полный набор белков, из которых состоит человеческое тело. Следующий шаг – выяснить при помощи уникальных возможностей квантовых компьютеров, как эти белки творят свое волшебство, и использовать их для создания нового поколения лекарств и методов лечения.
Уже делаются попытки подключить квантовые компьютеры к нейросетям для создания нового поколения обучаемых машин, способных буквально изобрести самих себя заново. Ноутбук на вашем столе, напротив, никогда не учится. Сегодня он нисколько не мощнее, чем был в прошлом году. Лишь недавно, с появлением и развитием новых методов глубокого обучения, компьютеры начали делать первые шаги к распознаванию ошибок и самообучению. Квантовые компьютеры могли бы экспоненциально ускорить этот процесс и оказать исключительное влияние на медицину и биологию.
Генеральный директор Google Сундар Пичаи сравнивает появление квантовых компьютеров с историческим полетом братьев Райт в 1903 г. Само по себе первое испытание не особенно поражало воображение, поскольку полет длился всего лишь скромные 12 секунд. Но этот короткий полет стал своеобразным триггером. Он положил начало современной авиации, которая, в свою очередь, изменила ход развития человеческой цивилизации.
На кону сейчас стоит ни много ни мало наше будущее. Оно доступно любому, кто сможет построить и использовать квантовый компьютер. Но чтобы по-настоящему понять, какое влияние эта революция окажет на нашу повседневную жизнь, полезно еще раз восстановить в памяти некоторые доблестные деяния прошлого, когда люди пытались исполнить мечту об использовании компьютеров для моделирования и анализа окружающего нас мира.
И все это началось с загадочного объекта возрастом 2000 лет, найденного на дне Средиземного моря.
Глава 2
Конец цифровой эпохи
Одна из самых интригующих и захватывающих тайн Древнего мира пришла к нам из глубин Эгейского моря. В 1901 г. ныряльщики смогли поднять со дна возле острова Антикитера странную и любопытную штуковину. Среди осколков керамики, монет, украшений и статуй, оказавшихся на дне вместе с потерпевшим крушение кораблем, ныряльщики обнаружили объект, который странным образом отличался от прочих. Поначалу он выглядел как бессмысленный кусок камня, покрытый коралловыми наростами.