Квантовый ум. Грань между физикой и психологией
Шрифт:
Душа в современной физике
Копенгагенская интерпретация квантовой механики (Бор, Борн, Гейзенберг и др.), с которой сегодня согласны большинство физиков, учит, что мир вокруг нас представляет собой полуматериальный туман вероятностей, полный «тенденций вещей происходить». Бор предполагал, что для описания субатомных событий нам нужды две точки зрения общепринятой реальности, два измерения особых качеств любого материального события. Он называл эти две точки зрения дополнительными. Принцип дополнительности гласит, что для понимания квантового мира нам необходимы два или более классических (то есть относящихся к общепринятой реальности) описаний одного и того же события. Например, частица при измерении в один момент
В этой интерпретации квантовая механика оказывается полным математическим описанием материи2. Это описание сопровождается предостережением: нельзя говорить или даже думать о частице с точки зрения ОР. Следует говорить лишь о том, что поддается проверке. То, что происходит между измерениями, считается не относящимся к сфере физики.
Против этого утверждения, которое скрывается на заднем плане науки и подразумевает, что вам не позволено думать о том, что вы не можете проверить, резко возражают такие физики, как Дэвид Бом. Однако, если вы встречаетесь с физиками, поддерживающими Копенгагенскую интерпретацию, в частном порядке, они могут признаваться, что не верят в официальную точку зрения. Например, Ричард Фейнман писал (Feynman at all, 1965), что он верит в Копенгагенский подход к квантовой теории. Однако в личной беседе он говорил, что на самом деле не считает его верным. Эйнштейн также говорил, что не верит в идеи Бора.
Старый раскол между Эйнштейном и Бором остается до сих пор. Многие физики подозревают, что физика не дает полного описания материальной Вселенной. Некоторые признают возможность духа в материи. Им кажется, что маргинализация процессов НОР, начатая в эпоху Возрождения, была ошибкой. В некотором смысле, они возвращаются к первоначальному изображению трехлетним ребенком самого себя как лица с сознанием – без рук или ног, которые дают ему возможность самомотивируемого действия.
Смелые физики, вроде Стивена Хоукинга, Фреда Алена Вольфа, Роджера Пенроуза, Амита Госвами и многих других, выходят за пределы существующих представлений, пытаясь выяснить, каким образом в физику входит сознание. Например, Госвами говорит, что сознание создает события3. Некоторые нейрофизиологи утверждают обратное: сознание возникает из материи. Другим ученым кажется, что если бы сознание воздействовало на материю, оно должно было бы быть отдельным от нее.
Единственное, что мы можем сказать с уверенностью, – это то, что мы стоим на границе между механистическими воззрениями и новой точкой зрения, согласно которой материя обладает чувственным способностями, в чем-то подобными способностям человеческих существ. Эта новая точка зрения требует как фактов ОР, так и знания вневременной Вселенной. Эта нарождающаяся точка зрения должна удовлетворять двум ограничивающим условиям: миру ОР воспроизводимых фактов и цифр и миру НОР чувственной психологии и духовности. Многообещающее направление в физике, которое считает материю обладающей чем-то вроде духа, вполне может идти рука об руку с более чувственной психологией, ведущей к философии жизни, новой биологии и западной медицине, основывающейся на осознании как в дневном бодрствовании, так и в сновидении.
Примечания
1. Теоретик Кэшинг высказывает предостережение в отношении нашей тенденции формулировать теории и факты. Он цитирует несколько высказываний Бора, Эйнштейна и Гезенберга (Quantum Mechanics 1994, Chap. 3), показывающих, как эти физики – подобно всем нам – ошибочно принимают наши теории за факты общепринятой реальности.
2. Квантовая механика является полной и выражается на языке того, что называется векторами состояния, волновыми функциями и амплитудами вероятности.
3. Точнее, Амит Госвами в книге «Самоосознающая Вселенная» говорит, что сознание создает события, коллапсируя волновую функцию. На это же намекали и другие физики, в частности Зукав, Капра и Вольф. Выдающийся математический физик Джон Нейман еще в 1932 г. говорил, что в квантовой механике существует сознание, однако никто точно не знает, где именно.
14. Двухщелевой
экспериментВсякий, кого не потрясает квантовая теория, просто ее не понял.
Чтобы далее углубиться в изучение того, где сознание входит в физику, мы сперва отвлечемся на рассмотрение природы квантовых объектов. Затем мы вернемся к нашей чувственной психологии, основанной и на повседневном времени, и на сновидении.
Когда физики хотят выяснить, что представляет собой материя, они подвергают исследованию ее маленький кусочек. Когда дело доходит до таких маленьких вещей, как элементарные частицы, выделять и исследовать их становится трудно, поскольку они слишком малы, чтобы их можно было видеть даже в мощный микроскоп. Если вы имеете дело с электронами, то вам нужно проводить новые эксперименты с новым оборудованием. Вам необходима электронная пушка, испускающая электроны, и счетчик, который щелкает, когда электрон попадает в мишень. Вы можете пропускать электроны через конденсационную камеру и наблюдать оставляемые ими следы или можете считать их, когда они попадают в счетчик. Но вы никогда не видите электроны непосредственно.
В этой главе я хочу обсудить, что происходит с электронами, когда они пролетают через крошечные отверстия, поскольку поняв, что происходит с электронами в этих условиях, мы будем способны понять некоторые из самых глубоких аспектов квантовой механики. Тогда мы сможем перейти к дальнейшему изучению того, где в физику входит сознание.
Двухщелевой эксперимент
Давайте теперь рассмотрим двухщелевой эксперимент, который наиболее ясно показывает природу всех квантовых объектов. Представьте себе обычную квадратную комнату, посреди которой установлена перегородка. Электроны из электронной пушки будут проходить через одно или два отверстия в перегородке.
Электронная пушка не похожа на пушки, которые мы видим в обычной реальности. По существу, это раскаленная проволока, вроде той, что можно видеть в электрической лампочке. Эта раскаленная проволока действует как пушка в том смысле, что она выбрасывает электроны. Мы направляем их на экран, покрытый счетчиками электронов. Эти счетчики чувствительны к электрическому заряду. Счетчики, располагающиеся по всему экрану, издают щелчки и регистрируют, или считают, сколько электронов попадает в данную точку на экране.
Оказывается, что то, сколько щелей открыто в перегородке, влияет на конечное появление электронов на экране. Для начала откроем в перегородке только одну щель.
Представьте себе, что вы пропускаете электроны через перегородку с одной щелью. Будем считать, что другая щель закрыта (см. рис. 14.1). Кроме того, для простоты представим себе, что я – это электрон. Мне становится по-настоящему жарко там, где находится пушка (раскаленная проволока), и мне не терпится быть выброшенным через щель в перегородке. Пушка возбуждает меня, и скоро у меня будет достаточно энергии, чтобы пролететь прямо через щель в перегородке в центре комнаты и оказаться на экране.
Помните, что есть только одна дверь, через которую я могу пройти. Другая дверь закрыта. Это очень ограниченный мир, но он мог бы быть забавным, и потому я собираюсь посмотреть, что случится. Я пролетаю через комнату и попадаю в экран на стене. Я попадаю в определенную точку экрана, и это отмечает счетчик, который издает щелчок.
Рис. 14.1. Комната с перегородкой слева и экраном справа
Чтобы продолжать эксперимент, вы можете нагревать ту пушку и посылать еще некоторое количество моих друзей-электронов через перегородку. Какой результат вы увидите по другую сторону перегородки, когда закончите это делать? Вы обнаружите, что мы, электроны, ведем себя более или менее подобно горсти брошенных камешков. Иными словами, мои друзья и я проходим через щель и, по большей части, попадаем в центр экрана. Конечно, бывают времена, когда некоторые из нас отклоняются от центра, иногда мы попадаем на экран еще дальше от центра, а в редких случаях один из нас попадает в самый край экрана (рис. 14.2).