Лекции
Шрифт:
Для этого, возможно, было бы достаточно произвести один очень простой и широко известный опыт. Я мог бы взять знакомое устройство, лейденскую банку, зарядить ее от фрикционной машины, а затем разрядить. Объясняя вам ее стабильное состояние во время зарядки и переходное состояние во время разряда, и обратив ваше внимание на силы, которые вступают в игру и на те явления, которые они вызывают к жизни, я мог бы полностью описать эту современную идею. Без сомнения, на мыслителя этот простой опыт произвел бы такое же впечатление, как самая красочная демонстрация. Но это должна быть и экспериментальная демонстрация, такая, что кроме целей обучения преследует и цели развлечения, а в этом случае простой опыт, вроде описанного, вряд ли бы достиг целей, которые имеет в виду лектор. Следовательно, мне должно выбрать другой путь показа, может быть, более броский, но, возможно, не менее поучительный. Вместо фрикционной машины и лейденской банки я буду пользоваться в течение этих опытов индукционной катушкой, обладающей определенными свойствами, детально описанными мной во время лекции, прочитанной перед аудиторией Лондонского электротехнического института в феврале 1892 года. Эта катушка способна вырабатывать токи огромного напряжения, колеблющиеся с огромной скоростью. С помощью этого устройства я попытаюсь показать вам три особых класса эффектов, или явлений, и намереваюсь в ходе этих опытов не только проиллюстрировать их, но и сделать так, чтобы эти опыты научили нас какой-либо новой истине или показали нам какой-либо новый аспект этой захватывающей науки. Но прежде чем мы приступим, было бы полезно описать используемые устройства, а также методику получения высоких потенциалов и высокочастотных токов, которые работают во время этих опытов.
Об устройствах и методах преобразования тока
Эти высокочастотные токи получаются особым способом. Применяемая методика была предложена мною около двух лет назад во время лекции в Американском институте электроинженеров. Несколько способов, практикуемых в лабораторных
Броски тока могут быть одного направления, но в описанных условиях обычно формируемые колебания накладываются на основные. Когда условия опыта определены таким образом, что наложенных колебаний нет, импульсы тока следуют в одном направлении, и мы имеем средство преобразования постоянного тока высокого напряжения в постоянный ток низкого напряжения, что, как я полагаю, может найти прикладное применение.
Этот способ преобразования крайне интересен и я был сильно впечатлен его красотой, когда впервые применил его. Он идеален во многих отношениях, и не требует применения никаких механических устройств, позволяет получать токи нужной частоты от обычной схемы постоянного или переменного тока. Частоту базовых разрядов в зависимости от относительной скорости подачи энергии и рассеивания можно широко изменять путем несложной регулировки этих показателей, а частоту наложенных колебаний — путем определения емкости, самоиндукции и сопротивления цепи. Потенциал же схемы можно поднять до нужной величины настолько, насколько может выдержать изоляция, путем соотнесения показателей емкости и самоиндукции во вторичной обмотке, которая может состоять из нескольких витков.
Рис. 2
Поскольку условия проведения опыта часто таковы, что прерывистость или колебания сразу не устанавливаются, особенно при использовании источника постоянного тока, полезно связать прерыватель с дугой, как я применял некоторое время назад дутьё или магнит, если такие приспособления есть под рукой. При преобразовании постоянного тока особенно эффективен магнит. Если первичным источником является генератор переменного тока, то желательно, как я указывал ранее, чтобы частота была низкой, а сила тока, формирующего дугу, высокой.
Вариант такого разрядника, который оказался удобным в использовании и применялся в нескольких опытах, в частности, для преобразования постоянного тока, показан на рисунке 2. NS — это полюса очень сильного магнита, возбуждаемого катушкой с. Полюсные наконечники имеют отверстия для регулировки и закрепляются в нужном положении винтами ss1Штоки разрядника dd1, заостренные на концах, для того чтобы приблизиться к зубцам полюсов, проходят через медные муфты bb1и крепятся винтами s2s2Пружины rr1 шайбы сс, надеты на штоки, причем шайбы служат для установки концов штоков на определенном приемлемом расстоянии при помощи винтов s3s3, а пружины — для разведения концов. Когда необходимо получить дугу, надо ударить легонько по одной из резиновых рукояток hh1 тогда концы штоков соприкасаются, но сразу разводятся пружинами rr1Такая конструкция хорошо зарекомендовала себя, когда эдс была недостаточна для пробоя между контактами, она также позволяет избежать короткого замыкания генератора металлическими концами штоков. Скорость прерывания тока магнитом зависит от напряжения магнитного поля и разности потенциалов на концах дуги. Прерывания обычно столь часты, что вызывают музыкальный сигнал. Несколько лет назад было замечено: когда мощная катушка индуктивности разряжается между полюсами сильного магнита, во время разряда раздается звук сродни пистолетному выстрелу. Было сделано туманное замечание относительно того, что искра усиливалась наличием магнитного поля. Теперь стало ясно, что ток пробоя, текущий некоторое время, прерывается много раз, что и порождает звук. Это явление особенно заметно, когда цепь возбуждения большого магнита или динамо-машины разрывается мощным магнитным полем.
Когда сила тока разряда относительно высока, желательно, чтобы на концах разрядных штоков были укреплены очень жесткие кусочки углерода, и дуга бы играла между ними. Это предохраняет разрядные штоки и, кроме того, имеет то преимущество, что пространство между ними имеет более высокую температуру, поскольку тепло не так быстро рассеивается через углерод, в результате чего для поддержания той же последовательности разрядов требуется меньшая эдс.
Разрядник другой формы, также с успехом применяемый в отдельных случаях, показан на рисунке 3. В данном случае стержни разрядника ddf проходят через отверстия в деревянном коробе В, который на внутренней поверхности имеет толстый слой слюды, что обозначено на рисунке жирными линиями. Отверстия снабжены слюдяными гильзами mm1некоей толщины, которые, по возможности, не должны касаться стержней dd. Короб снабжен крышкой с, окружность которой несколько больше самого короба. Искровой промежуток подогревается лампой l, установленной внутри короба. Пластина р над лампой позволяет потоку воздуха проходить только через воздуховод лампы е, а подача воздуха происходит через отверстия оо над днищем короба, причем воздух движется в направлении, указанном стрелками. Во время работы разрядника крышка короба закрыта, так что свет дуги не виден снаружи. Желательно исключить свечение, насколько это возможно, так как оно мешает проведению некоторых экспериментов. Разрядник такой конструкции очень прост и эффективен, если с ним правильно обращаться. Когда воздух нагревается до определенной температуры, он теряет свои свойства изолятора; становится слабым диэлектриком, и последствия этого таковы, что дуга устанавливается на большем расстоянии. Дуга, естественно, должна быть в достаточной степени изолятором, чтобы разряд проходил резко. Дуга, сформированная при таких условиях, довольно длинная, может быть достаточно чувствительной, и слабого тока воздуха через воздуховод с достаточно, чтобы произвести быстрые прерывания. Настройка производится путем регулирования температуры и скорости потока воздуха. Вместо использования лампы целей эксперимента можно достичь, добиваясь потока теплого воздуха другими способами. Очень простой метод, который уже применялся, — поместить дугу в длинную вертикальную трубку, сверху и снизу ограниченную пластинами для регулировки температуры и скорости потока воздуха. Следует предпринять меры для устранения звука.
Ослабить
диэлектрические свойства воздуха можно путем его разрежения, применяя и магнит. Для этой цели берется большая трубка с мощными углеродными или металлическими электродами, между которыми возникает разряд, причем трубка помещается в мощном магнитном поле. Воздух из трубки откачивается до такой степени, что разряд проходит легко, но давление в ней должно быть более 75 мм, когда происходит обычный нитевидный разряд. В разряднике другого типа, совмещающем в себе все описанные особенности, разряд возникает между двумя подвижными полюсными наконечниками, причем пространство между ними нагревается до определенной температуры.Следует отметить, что при использовании таких или подобных разрядных устройств пробойного типа ток проходит через первичную обмотку катушки, при этом нежелательно, чтобы число прерываний тока в секунду было больше, чем естественная частота колебаний тока в цепи питающей динамо-машины, а она обычно мала. Следует также обратить внимание аудитории на то, что хотя устройства, упомянутые в связи с пробойным разрядом, и полезны при определенных условиях, они всё же могут быть источниками проблем, так как создают прерывания и другие неполадки, с которыми следует бороться.
Вынужден признать, к сожалению, что этот прекрасный способ преобразования имеет один недостаток, который не является, впрочем, жизненно важным, и его я постепенно преодолеваю. Лучше всего мне обратить на него ваше внимание и указать перспективное направление движения, сравнив электрический процесс с его механическим аналогом. Этот процесс можно проиллюстрировать следующим образом. Представьте себе бак, в днище которого имеется широкое отверстие, которое закрыто пружинной задвижкой так, что она открывается внезапно, когда жидкость, поступающая в бак, достигает определенного уровня. Пусть жидкость поступает в бак через трубу, подающую ее с определенной скоростью. Когда уровень жидкости в баке достигает критической отметки, пружина подается и днище открывается. Через широкое отверстие жидкость моментально выливается и пружина, встав на место, снова запирает отверстие. Бак снова наполняется, и через некоторое время процесс повторяется. Ясно, если жидкость поступает в бак быстрее, чем она успевает слиться сквозь отверстие в днище, отверстие будет всегда открытым, но бак будет переполнен. Если скорость наполнения и скорость слива будут одинаковы, то задвижка будет частично открыта, и в целом колебания уровня жидкости и задвижки не будут наблюдаться, хотя их и можно определенным способом инициировать. Но если бак будет наполняться медленнее, чем освобождаться, то колебания всегда будут присутствовать. И опять же, каждый раз, когда днище открывается и закрывается, пружина и уровень жидкости, если эластичность пружины и инерция движущихся частей выбраны правильно, будут совершать независимые колебания. В данном примере жидкость можно сравнить с электричеством или электрической энергией, бак с конденсатором, пружину — с диэлектриком, а трубу — с проводом, подающим электричество к конденсатору. Для того чтобы аналогия была более полной, следует предположить, что задвижка, каждый раз когда резко открывается, сильно бьется о неупругий ограничитель, и в результате этого удара происходит некоторая потеря энергии, и, кроме того, энергия частично рассеивается, в результате фрикционных потерь. В приведенном примере жидкость находится под постоянным давлением. Если давление жидкости ритмично меняется, то это следует уподобить переменному току. Тогда процесс становится непростым для понимания, но механический и электрический процессы в принципе идентичны.
Желательно, для экономичного поддержания колебаний, насколько это возможно, исключить потери от трения и удара. Что касается трения, что в варианте электрическом соответствует потерям от сопротивления в цепи, то от него нельзя избавиться полностью, но их можно свести к минимуму, правильно выбрав размер цепи и применив тонкие проводники в форме ленты.
Но потери, вызванные первым пробоем диэлектрика, в механическом варианте это соответствует сильному удару о неэластичный ограничитель, преодолеть гораздо важнее. В момент пробоя воздух в зазоре имеет определенное, очень высокое сопротивление, величина которого сильно снижается, когда ток достигает какого-то значения и воздух в зазоре нагревается. Потери энергии можно существенно снизить, если поддерживать температуру пространства зазора на высоком уровне, но тогда не будет прерывания разряда. Когда мы умеренно нагреваем зазор при помощи лампы или иным способом, экономия в отношении дуги ощутимо возрастает. Но магнит или другое прерывающее устройство не снижает потерь в дуге. Точно так же поток воздуха только увеличивает рассеивание энергии. Воздух, да и вообще газ, в таких условиях ведет себя любопытно. Когда два тела, заряженные до очень высокого потенциала, пробойно разряжаются сквозь воздух, последний может рассеять любое количество энергии. Эта энергия, очевидно, уносится физическими носителями при столкновениях и соответствующих молекулярных потерях. Молекулярный обмен в пространстве происходит с непостижимой скоростью. Когда между двумя электродами происходит мощный разряд, они могут оставаться совсем прохладными, и всё же потери в воздухе могут достигать любой величины. На практике часто случается, что при большой разнице потенциалов на электродах несколько лошадиных сил рассеиваются в дуге разряда и при этом даже не наблюдается значительного повышения температуры электродов. Таким образом, все фрикционные потери происходят в воздухе. Если молекулярный обмен в воздухе предотвращен, как например тогда, когда воздух заперт в герметичном сосуде, газ внутри такого сосуда быстро достигает высокой температуры даже при несильном разряде. Трудно подсчитать, какое количество энергии рассеивается звуковыми волнами, неважно, слышны они или нет, при мощном разряде. Когда ток разряда высок, электроды могут быстро нагреться, но это не есть надежный показатель того, какое количество энергии потеряно в дуге, так как потери в самой дуге могут быть сравнительно малы. Воздух, или вообще газ, при нормальном давлении не являются наилучшей средой для пробойного разряда. Воздух или иной газ под большим давлением, конечно, гораздо более приемлемая среда для зазора. Я проводил долгие опыты в этом направлении, к сожалению, не приведшие к блестящим результатам с точки зрения преодоления этих трудностей и получения воздуха под большим давлением. Но даже если среда в зазоре твердая или жидкая, имеют место те же потери, хотя они и меньше в целом, ибо как только устанавливается дуга, твердое или жидкое вещество испаряется. И в самом деле, неизвестно такое тело, которое бы не распалось под действием дуги, и в научной среде остается открытым вопрос, возможен ли вообще дуговой разряд в воздушной среде, если от электродов не отделяются частицы материала. Когда сила тока в дуге невелика, а сама дуга длинная, я полагаю, что при распаде электродов расходуется достаточно значительное количество энергии, а электроды — частично по этой причине — могут оставаться довольно прохладными.
Идеальная среда для искрового промежутка должна просто пробиваться, а идеальный электрод должен быть изготовлен из материала, который не способен распадаться. При небольшой силе тока, текущего через промежуток, лучше всего использовать алюминий, но не при сильном токе. Пробойный разряд в воздухе, или иной обычной среде, не имеет природу трещины, его скорее можно сравнить с тем процессом, когда бесчисленное количество пуль проходит сквозь среду, оказывающую сильное сопротивление полету пуль, а это приводит к значительным потерям энергии. Среда, которая трескается при возникновении электростатического напряжения, — а так скорее всего и происходит в абсолютном вакууме, то есть чистом эфире, — дает очень малые потери в искровом промежутке, настолько малые, что ими можно пренебречь, по крайней мере теоретически, так как трещина происходит вследствие крайне незначительной деформации. Когда я очень осторожно откачивал воздух из вытянутой трубки с двумя алюминиевыми электродами, мне удалось получить такой вакуум, что при прохождении вторичного разряда катушки он имел форму тонких искровых потоков. Любопытно, что разряд полностью игнорировал электроды и начинался далеко за пределами алюминиевых пластин, служивших таковыми. Эта необычайно высокая степень вакуума может существовать очень короткое время. Возвращаясь к идеальной среде, представьте себе, для примера, кусок стекла или подобный предмет, зажатый в тиски, который сжимает его всё сильнее и сильнее. В определенный момент малейшее нарастание давления вызовет трещину в стекле. Потеря энергии при расколе стекла может быть ничтожной, и хотя сила и велика, деформация будет незначительной. Теперь представьте себе, что стекло обладает свойством полностью восстанавливать целостность при малейшем уменьшении давления. Вот так и должен вести себя диэлектрик в искровом промежутке. Но поскольку в промежутке всегда будут иметь место потери, среда, которая должна быть сплошной, будет производить обмен в промежутке с огромной скоростью. В предыдущем примере, когда стекло идеально закрыто, это значит, что диэлектрик в зоне разряда обладает отличными изолирующими свойствами; если стекло трескается, это означает, что среда в промежутке — хороший проводник. Сопротивление диэлектрика должно сильно меняться при малейших изменениях значения эдс в промежутке. Это условие достижимо, но очень несовершенным способом: нагревая воздух в искровом промежутке до определенной критической температуры, зависящей от эдс в промежутке, или путем нарушения изолирующих свойств воздуха. Но, по сути дела, разряд в воздухе никогда не происходит пробойно, в строгом понимании этого термина, так как перед внезапным броском тока всегда присутствует слабый, предваряющий ток, который сначала постепенно, а потом резко нарастает. Вот почему скорость обмена гораздо выше, например, когда пробивается стекло, чем когда разряд проходит сквозь слой воздуха с той же диэлектрической прочностью. Следовательно, в качестве среды для искрового промежутка твердое вещество или жидкость были бы гораздо предпочтительнее. Довольно трудно себе представить твердое тело, моментально заращивающее трещину. Но жидкость под большим давлением ведет себя как твердое тело и к тому же имеет способность восстанавливать целостность. Поэтому у меня сложилось мнение, что жидкий изолятор может быть более приемлемым в качестве диэлектрика, чем воздух. Исходя из этой идеи, были поставлены опыты с разрядниками различных типов, в которых применялись такие изоляторы разнообразной формы. Полагаю, что достаточно будет сказать несколько слов об одном из них. Он показан на рисунках 4а и 46.