Математические модели в естественнонаучном образовании. Том II
Шрифт:
Эти уравнения могут быть решены либо путем записи системы в виде матричного уравнения и нахождения обратной матрицы, либо путем подстановки формулы для одной переменной, полученной из одного уравнения, в другие. Любой способ гарантированно приведёт к следующему решению
Рисунок 5.9. Некорневое 3-таксонное дерево.
Будем называть эти формулы 3-точечными формулами для подгонки таксонов к дереву. К сожалению, с более чем 3 таксонами точная подгонка данных к дереву обычно невозможна. Однако алгоритм Фитча-Марголиаша (кратко называемый в таблицах как FM) использует случай 3 таксонов для обработки большего количества таксонов. Теперь объясним работу алгоритма на примере. Будем использовать данные о расстоянии, приведенные в таблице 5.4.
Таблица 5.4. Расстояния между таксонами
.31 1.01 .75 1.03
1.00 .69 .90
.61 .42
.37
Начинаем
Таблица 5.5. Расстояния между группами; FM-алгоритм, шаг 1a
.31 .93
.863
Имея только три таксона в этой таблице, можем точно подогнать данные к дереву, используя 3-точечные формулы, чтобы получить рисунок 5.10. Ключевым моментом здесь является то, что 3-точечные формулы, в отличие от UPGMA, могут давать неравные расстояния таксонов от общего предка.
Рисунок 5.10. FM-алгоритм; шаг 1.
Теперь оставляем только ребра, заканчивающиеся в
Таблица 5.6. Расстояния между группами; FM-алгоритм, шаг 1b
1.005 .72 .965
.61 .42
.37
Снова
ищем ближайшую пару (теперь этоТаблица 5.7. Расстояния между группами; FM-алгоритм, шаг 2a
.683 .783
.37
Рисунок 5.11. FM-алгоритм; шаг 2.
Оставляем ребра инцидентные с
Таблица 5.8. Расстояния между группами; FM-алгоритм, шаг 2b
1.005 .8425
.515
На этом этапе можем получить итоговое дерево по таблице путем окончательного применения 3-точечных формул, что дает рисунок 5.12.
Рисунок 5.12. FM-алгоритм; шаг 3.
Теперь заменяем группы на этой последней диаграмме шаблонами ветвления, которые уже нашли ранее. Это дает рисунок 5.13.
Последним шагом является заполнение оставшихся длин
Рисунок 5.13. FM-алгоритм; завершение.
Обратите внимание, что одно ребро оказалось отрицательной длины. Поскольку этого не может быть, многие на практике предпочли бы просто переопределить длину в 0. Однако, если это произойдет, то должны будем по крайней мере проверить, что отрицательная длина была близка к 0, иначе придётся беспокоиться о качестве используемых данных.
Хотя на первый взгляд это может показаться странным, но как алгоритм Фитча-Марголиаша, так и UPGMA будут создавать точно такое же топологическое дерево при применении к набору данных. Причина этого заключается в следующем: при принятии решения о том, к каким таксонам или группам присоединиться на каждом шаге, оба метода учитывают точно такую же свернутую таблицу данных и оба выбирают пару, соответствующую наименьшей записи в таблице. Отличаться будут только метрические характеристики результирующих деревьев. Это немного подрывает надежду на то, что FM-алгоритм лучше, чем UPGMA. Хотя это может привести к лучшему метрическому дереву, но топологически оно никогда не отличается.