Механика от античности до наших дней
Шрифт:
При этом необходима была количественная теория, поэтому в науке стали играть особенно важную роль уже применявшиеся в мореплавании методы точного измерения времени. Можно напомнить об открытии отставания маятниковых часов при изменении географической широты, которое впервые заметил Ж. Рише во время астрономической экспедиции в Кайенну, — неожиданном наблюдении, приведшем впоследствии к уточнению формы Земли, к новым соображениям о соотношении массы и веса, и т. д. С другой стороны, для иллюстрации встречи число теоретических построений и конкретных технических проблем показательно признание Христиана Гюйгенса, который отмечал, что циклоида исследовалась первоначально им, как и многими другими математиками, чисто абстрактно и лишь затем нашла свое применение при построении циклоидального маятника.
Нужно ли говорить, что успешная разработка
Интересно проследить древние атомистические истоки классической механики.
Известно, что механика Галилея — Ньютона во многом примкнула к физике Демокрита — Эпикура. В основе ньютонова понятия массы лежит атомистическое представление о материи. Атомисты рассматривали тела как совокупность элементарных, однородных и неизменяемых частиц материи. Атомы неуничтожимы и несоздаваемы, они лишены всяких внутренних состояний и обладают единственным свойством — подвижностью. В этом учении уже содержалось по существу классическое представление о массе, которое нашло выражение у Ньютона (масса как мера количества материи определяется через плотность распределения частиц материи, заполняющих данный объем) и в несколько иной формулировке у Герца (масса определяется как относительное число атомов, содержащихся в данном объеме в данный момент времени).
Атомистический взгляд на строение материи Ньютон выразил следующим образом: «Бог вначале дал материи форму твердых, массивных, непроницаемых, подвижных частиц таких размеров и фигур и с такими свойствами и пропорциями в отношении к пространству, которые более всего подходили бы к той цели, для которой он создал их… Природа их должна быть постоянной, изменения телесных вещей должны проявляться только в различных разделениях и новых сочетаниях и движениях таких постоянных частиц».
Постоянство массы вытекает из постоянства атомов: так как атомы однородны и тождественны, то их массы пропорциональны объему. Удельные же веса, или плотности, сложных тел, представляющих собой комплексы одинаковых атомов, могут различаться, так как не все объемы заполнены атомами равномерно. Поэтому Ньютон и определяет массу сложных тел как меру количества материи, устанавливаемую пропорционально плотности ее и объему. Это определение массы, данное Ньютоном в его «Началах», представлялось многим критикам бессодержательным, ибо, по их мнению, само понятие плотности должно определяться через готовое понятие массы. Однако критика эта теряет основание, если согласиться, что в соответствии с атомистической концепцией Ньютон в приведенном выше определении имеет в виду не плотность массы, а плотность распределения атомов. Именно такое понимание массы, принятое Ньютоном, выражено точным образом в определении Герца.
К учению атомистов примыкают в значительной мере также классические представления времени, пространства и движения. Понятия пространства и времени атомисты совершенно отделяли от понятия материи: время и пространство существуют сами по себе, к материальным процессам, протекающим в них, они имеют чисто внешнее отношение. Эту концепцию целиком разделял Ньютон, выразивший ее следующим образом:
«Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью…
Абсолютное пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным…
Место есть часть пространства, занимаемая телом…
Абсолютное движение есть перемещение тела из одного его места в другое…
Как неизменен
порядок частей времени, так неизменен и порядок частей пространства. Если бы они переместились из мест своих, то они продвинулись бы (так сказать) в самих себя, ибо время и пространство составляют как бы вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве — в смысле порядка положения»{86}.Нельзя, впрочем, забывать, что конкретно-исторический генезис идей Ньютона был значительно сложнее и наряду с отражением идей древних атомистов в ньютоновом учении об абсолютном пространстве можно найти отголоски позднеантичных концепций, которые дошли до Ньютона через кембриджских платоников.
Однако не только античная атомистика и позднеантичные концепции пространства воздействовали на развитие механики XVII в. Здесь особенно важно было древне-греческое представление о непрерывном движении. У Галилея эта концепция была тесно связана с воззрениями Архимеда. Дискретная часть вещества — античный атом — движется в непрерывном пространстве, и каждый отрезок его пути может быть разделен на сколь угодно большое число сколь угодно малых отрезков. Эта навеянная механикой Архимеда концепция Галилея открывает дорогу идее непрерывного ускорения и другим фундаментальным идеям классической механики.
В конце жизни Галилей писал о сложении криволинейного и прямолинейного движений у Архимеда как о непосредственном истоке своей теории движения.
«Я не предполагаю ничего иного, кроме определения движения, я хочу трактовать и рассматривать это явление в подражание Архимеду в его «Спиральных линиях», где, заявив, что под движением по спирали он понимает движение, слагающееся из двух равномерных, одного — прямолинейного, а другого — кругового, он непосредственно переходит к демонстрации выводов. Я заявляю о намерении исследовать признаки, присущие движению тела, начинающемуся с состояния покоя и продолжающемуся с равномерно возрастающей скоростью, а именно так, что приращения этой скорости возрастают не скачками, а плавно, пропорционально времени».{87}
Идея непрерывного приращения скорости — это не только исходная идея динамики Галилея, но и исходная идея всей динамики XVII в., «Математических начал» Ньютона и динамики следующего столетия. Более того, это центральная идея классической науки в целом. В механике Аристотеля рассматривалась лишь интегральная схема «естественных мест» и «естественных» движений и «насильственных» движений. Но при этом движение не рассматривали от точки к точке и от мгновения к мгновению. Теперь дело изменилось. В науке появилось дифференциальное представление о движении, об изменении скорости в данной точке, об ускорении. Отсюда изучение проблем динамики с помощью анализа бесконечно малых.
Как уже говорилось, для динамики XVII в. характерно сочетание логико-математического выведения одного понятия из другого и эмпирического изучения мира. Последнее приобретает характер эксперимента, в котором исследуется, проверяется, устанавливается рационально постижимый механизм процесса. В свою очередь логико-математический путь проходит через экспериментально постигаемые понятия.
Такое сочетание выражается в появлении аксиом, которые говорят не о геометрических понятиях, образах и объектах, а о поведении движущихся тел. Это аксиомы механики. К ним ведет долгий путь от интуитивного не-аксиоматизированного положения, молчаливо полагаемого в основу тех или иных выводов, до четко формулированной, логически осознанной аксиомы.
В этом отношении наиболее интересен, пожалуй, принцип сохранения, к которому в разной форме на разных этапах подходили ученые XVII в., принцип инерции как принцип сохранения «состояния», принцип сохранения количества движения, живых сил и т. д.
ИСТОРИЯ ПРИНЦИПОВ СОХРАНЕНИЯ
Современный историк механики не случайно начинает свою общую характеристику развития механики в XVII в. со следующего положения: «От ожерелья, надетого на наклонную плоскость, до первой подлинно математической физики мировой системы, через законы падения и движения брошенных тел в пустоте, законы удара, теорию колебаний маятника, гидростатику и тяжесть воздуха, сопротивление жидкостей и движение в сопротивляющейся среде — таков путь, пройденный механикой XVII века»{88}.