Чтение онлайн

ЖАНРЫ

Мир многих миров. Физики в поисках иных вселенных.
Шрифт:

Как оказалось, гравитация вакуума скрывала большой сюрприз. Согласно общей теории относительности, давление и натяжение дают вклад в силу тяготения массивных тел. Если вы сжимаете предмет, его тяготение усиливается, если растягиваете — ослабевает. Обычно этот эффект очень мал, но если удастся растягивать предмет, не разрушая его, то в принципе можно ослабить его тяготение вплоть до полной нейтрализации или даже отталкивания. Именно это имеет место в случае вакуума. Отталкивающая гравитация натяжения вакуума значительно превосходит гравитационное притяжение его же массы, что в целом приводит к отталкиванию.

Это в точности то самое, что требовалось Эйнштейну для разрешения его проблемы. Он мог подобрать значение космологической постоянной так, чтобы притягивающая гравитация материи находилась в равновесии с отталкивающей гравитацией вакуума, давая в итоге статическую вселенную. Из своих уравнений он вывел, что баланс достигается, когда космологическая постоянная равна половине плотности энергии вещества.

Поразительным следствием модифицированных уравнений было то, что пространство статической вселенной должно быть искривленным и

замыкаться само на себя подобно поверхности сферы. Космический корабль, движущийся прямо вперед в такой замкнутой вселенной, в конце концов вернулся бы в исходную точку. Это замкнутое пространство называется трехмерной сферой. Ее объем конечен, хотя у нее нет границы.

Эйнштейн описал свою замкнутую модель Вселенной в статье, опубликованной в 1917 году. Он признавал, что у него нет наблюдательных подтверждений ненулевого значения космологической постоянной. Единственной целью ее введения было спасение статической картины мира. Более десяти лет спустя, когда расширение Вселенной было уже открыто, Эйнштейн сожалел, что вообще выдвинул эту идею, и называл ее величайшей ошибкой в свой жизни. [7] После этого неудачного дебюта отталкивающая гравитация почти на полвека исчезает из мейнстрима физических исследований, но лишь для того, чтобы позднее вернуться с новыми силами.

7

Позднее стало понятно, что эйнштейновская статическая космологическая модель неприемлема даже чисто теоретически, поскольку равновесие притягивающей и отталкивающей гравитации в этой модели является неустойчивым. Если по какой-то причине размеры вселенной Эйнштейна немного увеличатся, плотность вещества уменьшится (поскольку вырастут расстояния между галактиками), тогда как плотность энергии вакуума останется неизменной, будучи зафиксированной космологической постоянной. Следовательно, отталкивающая гравитация вакуума станет теперь сильнее притягивающей гравитации вещества и заставит вселенную расширяться. Это приведет к дальнейшему увеличению объема и еще большей разбалансировке притягивающих и отталкивающих сил. Вселенная, таким образом, войдет в режим ускоряющегося расширения. Аналогично, если размеры статической вселенной немного уменьшатся, притягивающая гравитация вещества победит отталкивание вакуума, и вселенная сколлапсирует в точку. Согласно квантовой теории, небольшие флуктуации размеров вселенной неизбежны, и поэтому вселенная Эйнштейна не может оставаться в равновесии бесконечно долго.

Глава З

Творение и его недостатки

Как ученый я просто не верю, что Вселенная началась со взрыва.

Сэр Артур Эддингтон

Вселенные Фридмана

В начале 1920-х годов вряд ли кто-то мог предположить, что замерзающий и голодный Петроград станет одним из тех мест, где случится очередной прорыв в космологии. Занятия в Петроградском университете едва возобновились после шестилетнего перерыва, вызванного войной и революцией. В холодной аудитории молодой профессор в очках читал лекции группе студентов, закутанных в шинели и меховые шапки. Профессора звали Александр Фридман. Лекции его были подготовлены тщательнейшим образом и подчеркнуто строги в математическом плане. В своем курсе Фридман затрагивал широкий круг тем: от математики и метеорологии — основных областей его специализации — до последнего увлечения молодого ученого — общей теории относительности.

Он восхищался теорией Эйнштейна и погрузился в ее изучение со свойственным ему энтузиазмом. "Я неуч, — часто говорил он. — Я ничего не знаю. Я буду еще меньше спать и не позволю себе никаких отвлечений, поскольку вся эта так называемая жизнь — лишь бесполезная растрата времени". [8] Он словно бы знал, что у него в запасе всего несколько лет, а сделать предстоит еще много.

В совершенстве освоив математику общей теории относительности, Фридман сконцентрировался на проблеме, которую считал центральной, — строении Вселенной в целом. Из статей Эйнштейна он знал, что без космологической постоянной теория не имеет статических решений, но хотел выяснить, какие варианты решений все же возможны. И тут был совершен радикальный шаг, обессмертивший его имя. Вслед за Эйнштейном Фридман предположил, что Вселенная однородна, изотропна и замкнута, то есть имеет геометрию трехмерной сферы. Но он отбросил статическую парадигму и позволил Вселенной двигаться. Радиус сферы и плотность вещества могли теперь изменяться во времени. Отказавшись от требования статичности, Фридман обнаружил, что уравнения Эйнштейна имеют решение. Они описывают сферическую вселенную, которая начинается с точки, расширяется до некоторого максимального размера, а потом вновь сжимается в точку. В начальный момент, который мы теперь называем Большим взрывом, все вещество Вселенной упаковано в единственную точку, в которой плотность вещества бесконечна. Она убывает, пока Вселенная расширяется, и растет, пока та сжимается обратно, чтобы опять стать бесконечной в момент "большого схлопывания", когда Вселенная вновь становится точкой.

8

Цит. по: Э.А. Тропп, В.Я. Френкель, А.Д. Чернин, "Александр Александрович Фридман", М., "Наука", 1988, с. 133.

Большой взрыв и "большое схлопывание" отмечают начало и конец Вселенной. Из-за исчезающе малого размера и бесконечной плотности материи математические величины, фигурирующие в уравнениях Эйнштейна, становятся неопределенными, а пространство-время не может продолжаться за

этими точками. Такие точки называют сингулярностями пространства-времени.

Рис. 3.1.Расширяющаяся и вновь сжимающаяся Вселенная.

Двумерную сферическую вселенную можно представлять расширяющимся и сжимающимся воздушным шаром (рис. 3.1). Закорючки на его поверхности изображают галактики, и по мере расширения шара расстояния между ними будут расти. Таким образом, наблюдатель в любой галактике видит, что остальные галактики разбегаются. Расширение постепенно замедляется гравитацией и в конце концов останавливается, сменяясь сжатием. На фазе сжатия расстояния между галактиками будут убывать, и все наблюдатели увидят, что галактики приближаются к ним.

Не имеет большого смысла спрашивать, куда расширяется Вселенная. Мы изображаем вселенную воздушного шара расширяющейся в окружающее пространство, но это не имеет никакого значения для ее обитателей. Они привязаны к поверхности шара и не представляют себе третьего, радиального измерения. Подобным образом для наблюдателя в замкнутой вселенной трехмерное сферическое пространство — это все существующее пространство, и вне его ничего нет.

Вскоре после публикации этих результатов Фридман открыл другой класс решений с иной геометрией. Вместо искривления "на себя" пространство в этих решениях в определенном смысле искривляется "от себя", что приводит к бесконечным (открытым) вселенным. Двумерным аналогом этого типа пространства является поверхность седла (рис. 3.2).

Рис. 3.2.Двумерный аналог открытой вселенной.

И вновь Фридман обнаруживает, что расстояние, разделяющее любую пару галактик в открытой вселенной, растет, начиная с нулевого значения в сингулярности. Сначала расширение замедляется, но в данном случае гравитация недостаточно сильна, чтобы обратить его вспять, и со временем галактики приближаются к постоянной скорости удаления.

На границе между открытыми и закрытыми моделями находится вселенная с плоской, евклидовой геометрией. [9] Она хоть и расширяется без ограничений, но делает это как будто на пределе, так что скорость расширения становится со временем все меньше и меньше.

9

Фридман не рассматривал случай плоской вселенной. Он был изучен Эйнштейном и де Ситтером в 1932 году.

Замечательная особенность решений Фридмана состоит в том, что они устанавливают простую связь между геометрией Вселенной и ее конечной судьбой. Если Вселенная замкнутая, она должна вновь сколлапсировать, а если открытая или плоская, то будет расширяться вечно. [10] В своих статьях Фридман не отдавал предпочтения ни одной из моделей.

К сожалению, Фридман не увидел, как его работа стала основанием современной космологии. Он умер от брюшного тифа в 1925 году в возрасте 37 лет. И хотя его статьи были опубликованы в ведущем немецком физическом журнале, на них почти не обратили внимания. [11] Они были извлечены из небытия лишь в 1930-х годах, вслед за открытием Хабблом расширения Вселенной. [12]

10

Простая связь между геометрией и судьбой Вселенной сохраняется, только если считать нулевой плотность энергии вакуума (космологическую постоянную). Подробнее об этом в главе 18.

11

Достойным внимания исключением была реакция Эйнштейна на работу Фридмана. Сначала Эйнштейн думал, что Фридман ошибся, и написал короткую заметку в журнал о том, что он считал ошибкой. Однако менее чем через год, после беседы с другом Фридмана Юрием Крутковым, он отказался от своих возражений. Крутков сообщил домой, что он победил в споре с Эйнштейном и что "честь Петрограда спасена!" Но хотя Эйнштейн и согласился с математическими выкладками Фридмана, он по-прежнему верил, что Вселенная статична, а работа Фридмана представляет лишь чисто формальный интерес. В своей второй заметке в журнале он писал, что "убедился в том, что результаты г-на Фридмана корректны и ясны". В первоначальном черновике он добавил, что эти результаты вряд ли могут иметь какое-то значение для физики, но потом зачеркнул данную фразу, видимо, поняв, что она основана в большей мере на его философских предубеждениях, чем на каких-то известных фактах.

12

Модель расширяющейся Вселенной была переоткрыта в 1927 году Жоржем Леметром. Как и работа Фридмана, статья Леметра оставалась совершенно неизвестной вплоть до открытия Хаббла.

Момент творения

Что бы ни говорили решения Фридмана о будущем Вселенной, самая неожиданная и интригующая их особенность — наличие начальной сингулярности, Большого взрыва, где перестает работать математика общей теории относительности. В сингулярности вещество сжимается до бесконечной плотности, и становится невозможно распространить решение на более ранние моменты времени. Таким образом, если воспринимать все буквально, Большой взрыв должен рассматриваться как начало Вселенной. Было ли это сотворением мира? Возможно ли, чтобы целая Вселенная началась с единственного события, случившегося конечное время назад?

Поделиться с друзьями: