Чтение онлайн

ЖАНРЫ

mixOmics для гуманитариев
Шрифт:

Перечень широко используемых методов mixOmics, которые будут подробно описаны в соответствующих главах ниже, за исключением CCA и MINT, можно представить следующей таблицей типов и объема данных, который они могут обрабатывать:

Методы, реализованные в mixOmics, подробно описаны в разных публикациях, обширный список которых постоянно пополняется и может быть найден в открытых источниках.

В следующей таблице приведён список методов mixOmics, наличие разрежения в которой указывает на методы, предполагающие

осуществление выбора переменных:

Основные функции и параметры каждого метода сведены в следующей таблице:

Каждый раздел, посвященный описанию того или иного метода, излагается по следующему плану:

1. Тип педагогического вопроса, на который нужно ответить.

2. Краткое описание иллюстративного набора данных.

3. Принцип метода.

4. Быстрый запуск метода с основными функциями и аргументами.

5. Чтобы идти дальше: настраиваемые опции, дополнительные графические построения и настройки параметров.

6. Вопросы и ответы.

Глава 1. Первые шаги

Как путь в тысячу миль начинается с первого шаг, так и использование любого пакета R начинается с его установки. Во-первых, можно скачать последнюю версию mixOmics от Bioconductor следующей командой:

if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("mixOmics")

Кроме того, можно установить последнюю версию пакета с GitHub, но для этого понадобится предварительная установка пакета remotes:

BiocManager::install("remotes")

BiocManager::install("mixOmicsTeam/mixOmics")

Пакет mixOmics напрямую импортирует следующие пакеты: igraph, rgl, ellipse, corpcor, RColorBrewer, plyr, parallel, dplyr, tidyr, reshape2, methods, matrixStats, rARPACK, gridExtra. Если возникнут затруднения при установке пакета rgl, то нужно будет дополнительно установить программное обеспечение X'quartz.

Загрузить установленный пакет можно следующей командой:

library(mixOmics)

Убедитесь, что при загрузке пакета не возникло ошибки, особенно для упомянутой выше библиотеки rgl. В примерах, которые будут приведены далее, используются данные, являющиеся частью пакета mixOmics. Чтобы загрузить свои собственные данные, проверьте установлен ли рабочий каталог, а затем считайте данные из формата .txt или .csv, либо с помощью пункта меню импортирования данных в RStudio, либо через одну из следующих командных строк:

# из файла csv

data <– read.csv("имя_файла.csv", row.names = 1, header = TRUE)

# из файла txt

data <– read.table("имя_файла.txt", header = TRUE)

Для получения более подробной информации о аргументах, используемых для настройки параметров этих функций, введите ?read.csv или ?read.table в консоли R.

Каждый анализ должен выполняться в следующем порядке:

1. Запустите выбранный метод анализа.

2. Выполните графическое представление образцов.

3. Выполните графическое представление переменных.

Затем используйте критическое мышление и дополнительные функции инструментов визуализации, чтобы разобраться в полученных данных. Некоторые из вспомогательных инструментов будут описаны в следующих главах.

Например, для анализа основных компонентов сначала загружаем данные:

My_table <– structure(list(Класс = c("7а", "7а", "7а", "7а", "7а", "7а", "7а", "7а", "7а",

"7а", "7б", "7б", "7б", "7б", "7б", "7б", "7б", "7б", "7б", "7б", "эталон", "отстающий"),

`Фимилия

Имя` = c("Иванов Иван", "Петров Петр", "Сидоров Сидор", "Егоров Егор",

"Романов Роман", "Николаев Николай", "Григорьев Григогий", "Викторов Виктор",

"Михайлов Михаил", "Тимуриев Тимур", "Ульянова Ульяна", "Ольгина Ольга",

"Людмилова Людмила", "Дарьева Дарья", "Кристинина Кристина",

"Натальина Наталья", "Глафирова Глафира", "Янина Яна", "Иринова Ирина",

"Валентинова Валентина", "Идеальный ученик", "Другая крайность"), Тема1 = c(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1), Тема2 = c(2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 4, 5, 5, 4, 4, 4, 5, 5, 4, 5, 5, 1), Тема3 = c(1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 5, 1), Тема4 = c(4, 5, 5, 4, 4, 4, 5, 5, 5, 4, 5, 5, 4, 4, 5, 5, 4, 4, 5, 4, 5, 1), `Тема 5` = c(1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 5, 5, 1), `№№` = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22)), row.names = c(NA, -22L), class = c("tbl_df", "tbl", "data.frame"))

Затем выполним следующие шаги:

My_result.pca <– pca(My_table) # 1 Запуск выбранного метода анализа

plotIndiv(My_result.pca) # 2 Визуальное представление образцов

plotVar(My_result.pca) # 3 Визуальное представление переменных

Это только первый пример, в дальнейшем появится много вариантов, из которых можно будет выбрать, наиболее соответствующий стоящим перед вами исследовательским задачам статистического анализа. Пакет mixOmics предлагает различные методы представления переменной и широкий выбор функций сбора информации на довольно больших наборах данных.

Сохраним числовые данные из исходной таблицы во вспомогательной переменной:

to.remove <– c('Фимилия Имя', 'Класс', '№№')

X <– My_table[, !colnames(My_table) %in% to.remove]

Следуя примеру выше, методы PCA могут быть применены для выбора первых пяти переменных, тесно связанных с первыми двумя компонентами в PCA. Пользователь определяет количество переменных, выбранных по каждому компоненту, например, здесь выберем пять переменных на каждом из первых двух компонентов командой keepX=c(5,5):

My_result.spca <– spca(X, keepX=c(5,5)) # 1 Запуск выбранного метода анализа

plotIndiv(My_result.spca) # 2 Визуальное представление образцов

plotVar(My_result.spca) # 3 Визуальное представление переменных

Можно заметить, что сократилось количество элементов на круге корреляции. Не останавливайтесь на достигнутом, находясь в начале большого пути. Можно улучшить наглядность представляемых результатов анализа следующим образом: загляните в справочное руководство по каждой из функций используемой в примерах, введя в консоли ?pca, ?plotIndiv, ?sPCA. Для запуска сопутствующих примеров можно использовать функцию example: example(pca), example(plotIndiv), и другие.

Глава 2. Метод главных компонент (PCA)

Зададимся следующим вопросом: как определить основные источники различий в имеющихся данных, а после этого выяснить, соответствуют ли такие источники объективным условиям педагогического эксперимента или они образовались в результате предвзятости экспериментаторов? Попутно хотелось бы визуализировать основные тенденции и закономерности изменения значений между образцами, в частности, естественного характера, в соответствии с известными условиями педагогического наблюдения.

Поделиться с друзьями: