Мозг (сборник)
Шрифт:
Эффективная терапия болезни Паркинсона - одна из самых крупных побед медицины, основанных на фундаментальных исследованиях в области биохимии и нейробиологии. Но даже до того, как становится понятным механизм заболевания мозга, иногда случайно удается открыть способ его эффективного лечения. Так было с антидепрессантами и антипсихотическими лекарственными препаратами, которыми ознаменовалось развитие психофармакологии и которые произвели революцию в психиатрии. Понимание того, как эти препараты действуют на химические синапсы, облегчает создание более эффективных лекарственных средств с меньшим побочным действием. Эпилепсия, причины и механизмы которой еще неизвестны, успешно лечится дилантином - препаратом, который был открыт в результате систематического поиска с применением электрофизиологических методик.
По мере того как в процессе тщательных исследований и накопления фундаментальных знаний растет понимание конкретных болезней, создаются новые способы их лечения и в конце концов методы их предупреждения.
Ф. КРИК
Мысли о мозге
Раздумывая о себе самом, человеческий мозг открыл некоторые поразительные факты. Чтобы понять, как он работает, очевидно, нужны новые методики его исследования и новая система понятий
В предыдущих статьях этого издания читатель, вероятно, видел, как мозг изучается на многих уровнях - от молекул в его синапсах до сложных форм поведения - и путем различных подходов - химического, анатомического, физиологического, эмбриологического и психологического - к нервной системе разнообразных животных, от примитивных беспозвоночных до самого человека. И все же читатель, вероятно, заметил также, что, несмотря на непрерывное накопление детальных сведений, то, как работает человеческий мозг, по-прежнему окутано глубокой тайной. Издатели "Scientific American" попросили меня как новичка в нейрофизиологии сделать некоторые общие замечания о том, как воспринимает эту проблему сравнительно посторонний наблюдатель. Я интересуюсь нейробиологией более 30 лет, но только последние года два пытаюсь заняться ею серьезно.
Зрительная кора ночной обезьяны служит примером того, как кора больших полушарий образует "карту" из областей, геометрически связанных с их функциями. В коре этого животного левое полушарие состоит из девяти областей, которые представляют собой организованные в соответствующем порядке карты поля зрения обезьяны (и трех областей, которые отвечают на стимулы, лежащие в поле зрения, но, по-видимому, не воспроизводят его в определенном порядке). А. На весьма схематичном изображении зрительная кора, занимающая заднюю треть коры больших полушарий, развернута таким образом, что ее можно видеть сверху. Геометрические отношения между полем зрения и разными участками зрительной коры были установлены в электрофизиологических опытах, где посредством микроэлектродов, введенных в зрительную кору, регистрировали ответы небольших групп нейронов на стимулы, предъявляемые в определенных участках поля зрения. Б. Здесь показана правая половина поля зрения. Квадратами обозначен ее горизонтальный меридиан, кружками вертикальный, а треугольниками - крайняя периферия поля. Эти символы наложены на те участки мозга, которые реагируют на части поля, представленные символами. Девять организованных зрительных областей следующие: первая зрительная (Зр 1), вторая зрительная (Зр 2), дорсолатеральный серп (ДЛ), медиальная височная (MB), дорсальная промежуточная (ДП), дорсомедиальная (ДМ), медиальная (М), задняя вентральная (3В), передняя вентральная (ПВ). Три, по-видимому, неорганизованные зрительные области следующие: задняя теменная (ЗТ), височно-теменная (ВТ) и нижнетеменная (НТ). Плюсы обозначают верхнюю часть поля зрения, минусы нижнюю часть. В. На дорсолатеральной поверхности мозга показано положение левого полушария и зрительных областей в нем. Картирование коры ночной обезьяны произвел Дж. Олмен (J. Allman) из Калифорнийского технологического института и И. Каас (J. Kaas) из Университета Вандербильта.
Приступая к новой дисциплине, полезно попытаться отделить те вопросы, которые хотя еще далеко не разгаданы, но по крайней мере могут, по-видимому, быть изучены тем или иным обычным способом, - от таких, для которых в настоящее время даже в общих чертах не предвидится готового объяснения. (Именно такой анализ привел нас с Дж. Уотсоном к поискам структуры ДНК.) К первой категории я бы отнес такие вопросы, как химическая и электрическая природа нейронов и синапсов, привыкание и сенситизация одиночных нейронов, действие медикаментов на нервную систему и т. д. Собственно говоря, я включил бы сюда почти всю нейроанатомию, нейрофармакологию и значительную часть нейрофизиологии. Даже развитие мозга не представляется мне по существу таинственным, несмотря на то что мы ничего не знаем о тех конкретных процессах, которые протекают в развивающемся эмбрионе.
В то же время некоторые функции человека, как мне кажется, недоступны пониманию на современном уровне наших знаний. Мы чувствуем, что есть нечто трудно объяснимое, но мы почти не в состоянии ясно и четко выразить, в чем состоит трудность. Это наводит на мысль, что весь наш способ мышления о таких проблемах, возможно, ошибочен. Из таких проблем я бы выдвинул на передний план восприятие, хотя другие, может быть, заменили бы его пониманием, воображением, волей или эмоциями. Все они имеют то общее, что составляет часть нашего субъективного опыта и что в них, вероятно, принимает участие множество сложно взаимодействующих нейронов.
Для того чтобы постичь эти высшие
уровни нервной деятельности, очевидно хорошо было бы узнать как можно больше о более низких уровнях, особенно тех, которые доступны прямому эксперименту. Но само по себе такое знание еще недостаточно. Представляется несомненным, что мы должны рассмотреть теории, которые касаются непосредственно переработки информации в больших и сложных системах, будь то информация, поступающая от органов чувств, или инструкции, посылаемые мышцам и железам, или же поток информации, содержащийся в обширной нервной активности между этими двумя крайними членами.Причина, по которой я выдвигаю на первый план восприятие и, в частности, зрительное восприятие, состоит в том, что, как ясно показывают Д. Хьюбел и Т. Визель (см. "Центральные механизмы зрения"), оно более доступно прямому эксперименту. Кроме того, наш внутренний образ внешнего мира и точен и ярок, что неудивительно, поскольку человек относится к животным, у которых зрение особенно хорошо развито. Чувство обоняния у человека, напротив, гораздо более смутное. Любопытно, что во многом зрительный образ строится способами, требующими от нас лишь незначительных усилий. Когда мы пытаемся думать об истинно трудных задачах, мы обычно выбираем что-нибудь вроде шахмат или математики, или изучения иностранного языка. Мало кто осознает, каким поразительным достижением является сама по себе способность видеть. Главный вклад в сравнительно новую область искусственного интеллекта состоял не столько в решении проблем обработки информации, сколько в том, чтобы показать, как невероятно трудны эти проблемы. Когда задумаешься над тем, какие расчеты должны быть произведены для опознания даже такой обычной картины, как человек, переходящий улицу, то поражаешься тому, что такое необыкновенное число последовательных детальных операций может быть осуществлено без всякого усилия за такое короткое время.
Создание более крупных, более быстрых и более дешевых компьютеров достижение, еще далекое от конечной цели, - дало нам некоторое представление о том, чего можно достичь быстрым вычислением. К сожалению, аналогия между компьютером и мозгом хотя и полезна в некоторых отношениях, но может и ввести в заблуждение. В компьютере информация обрабатывается при быстром темпе импульсов и последовательно. В мозгу темп гораздо медленнее, но информация может быть обработана параллельно в миллионах каналов. Детали современной вычислительной машины очень надежны, но исключение одной или двух из них может нарушить все вычисление. По сравнению с ними нейроны мозга несколько ненадежны, но порча даже немалого их числа вряд ли приведет к сколько-нибудь заметному изменению поведения. Компьютер работает по строго двоичному коду, мозг же пользуется менее точными способами сигнализации. Зато он, по-видимому, приспосабливает сложными и тонкими приемами число и эффективность своих синапсов к тому, чтобы его операции соответствовали прошлому опыту. Поэтому не удивительно, что, хотя компьютер точно и быстро производит длинные и запутанные арифметические вычисления - в чем человек довольно слаб, - человек способен опознавать изображения такими приемами, к которым ни один из современных компьютеров еще и не начал приближаться.
Было бы не слишком удивительно, если бы орудием теоретического подхода к таким проблемам оказалась теория информации. Пока что применение ее к зрительному восприятию ограничивалось главным образом ранними этапами зрительного пути. Так, например, для объяснения того, как информация, посылаемая по ограниченному каналу (такому, как зрительный нерв), может в принципе быть представлена более подробно в зрительной коре головного мозга, из области обработки информации были взяты теорема отсчетов и метод пересечения нуля (по Логану). Кроме того, Д. Марр (D. Магг) из Массачусетского технологического института схематически представил ход вычислительных операций, какие должен выполнить мозг, чтобы мы видели предметы так, как мы это делаем. Это дало нам представление о сложности проблемы, но пока что не привело к сколько-нибудь значительному выяснению действующих механизмов. В частности, до сих пор мы не располагаем каким-либо описанием сознательного восприятия, которое осветило бы наш непосредственный опыт такого восприятия. Как можно полагать, такие феномены основаны на том, что пути вычислений действуют каким-то образом сами на себя, но как именно это происходит, неизвестно. Поскольку эта центральная проблема ускользает от решения, нам остается только обратиться к более локальным и частным вопросам в надежде, что, трудясь над их решением, мы натолкнемся на правильный подход к более сложным глобальным проблемам.
Какой, в общем смысле, аппарат дает мозгу возможность выполнять свою замечательную деятельность? Число компонентов (нейронов) в мозгу составляет, вероятно, около 1011. Число синапсов, или контактов между нейронами, равно, возможно, 1015. В среднем на каждом нейроне имеется несколько тысяч отдельных входов, и он сам посылает связи ко многим другим нейронам. Физическое распределение большинства компонентов не особенно отчетливое. Дендриты, или короткие волокна, соседних нейронов сложно переплетены, хотя обычно они не соприкасаются друг с другом. Между дендритами ветвятся аксоны, или длинные волокна нейронов; многие из них часто обладают тысячами контактов. Монтажная схема таких волокон, если бы возможно было ее создать, разумеется, была бы весьма запутанной.