Чтение онлайн

ЖАНРЫ

Мышление и творчество
Шрифт:

Интересно также замечание П. Фейерабенда о том, что в дополнение к разумным доводам Галилей «использовал психологические приемы». «…Галилей победил благодаря своему стилю и использованию умных приемов убеждения, благодаря тому, что писал по-итальянски, а не по-латыни, и благодаря тому, что обращался к людям, которые по своему темпераменту были противниками старых идей и связанных с ними старых методов обучения» [156, с. 81].

Обратимся теперь еще раз к поискам Галилея. Внешне дело выглядит так: Галилей, решая одни задачи и проблемы, порождает другие, еще более сложные. Кроме того, он никак не может свести концы с концами, чтобы удовлетворить всем необходимым логическим требованиям. На самом же деле Галилей, выясняя условия, при которых может быть решена исходная задача, раскладывает ее на отдельные подзадачи. При этом он создает своеобразный проект удовлетворяющего его решения исходной задачи и действительно тем самым порождает новую предметную реальность, новый способ мышления, которые, как показала дальнейшая история механики, стимулировали постановку новых теоретических задач и проблем. Такую особенность научного мышления – порождать при решении одних научных проблем и задач другие, способствующие дальнейшей эволюции науки, – сегодня считают характерной именно для научного творчества.

И еще одна особенность галилеевского мышления. В ходе своих поисков он сталкивается с различными затруднениями: теряет

нить рассуждения, убеждается в нереализуемости исходного замысла, временно нарушает некоторые собственные принципы, получает прямые антиномии, не может связать различные теоретические положения и т. п. Для мышления Галилея характерно преодоление всех такого рода препятствий, и с психологической точки зрения это является моментом творчества. Научное творчество, с такой точки зрения, состоит в преодолении и разрешении всех преград и проблем, встающих перед ученым, то есть в преодолении «сопротивления материала». Ученый должен связать «концы с концами», задать такие представления и понятия, ввести и так обосновать выдвинутые положения, чтобы реализовывался исходный (или видоизмененный) замысел, поставленные задачи были решены, а все построение удовлетворяло бы его принципам, пониманию науки, было бы доступно аудитории, на которую ориентируется ученый. Предварительное планирование решения, расщепление исходной задачи на подзадачи, связывание «концов с концами», непрерывное обоснование всего построения – все это отдельные характерные моменты нового научного способа мышления, первый образец которого дает Галилей. Для античного или средневекового ученого сочетание этих разных моментов мышления выглядело бы хаосом, эклектикой, отсутствием строгости.

Короче, преодолеть «сопротивление материала» – значит так переработать и осмыслить весь предметный материал, все доступные ученому знания и понятия, чтобы удалось воплотить основные структуры и потенции личности ученого, сосредоточенные на данном предмете изучения, его ценности, установки, позиции в общении, способы работы. При этом ученый опирается и на сознательные методологические установки, и на рассудок, и на свою интуицию, и даже на эмоции, сопровождающие процесс творчества. Новые идеи, пишет П. Фейерабенд, «выжили потому, что предрассудок, страсть, гордость, ошибки, простое тупоумие, короче, все элементы, характеризующие контекст открытия, противостояли диктату разума, и потому, что этим иррациональным элементам было позволено идти своим путем» [156, с. 155]. Известно, например, что, делая определенный шаг в решении научной проблемы, настоящий ученый чувствует, движется он правильно или нет. В ряде случаев, найдя решение после долгих и упорных усилий, ученый испытывает изумительное чувство «разрешения». И понятно, почему преодоление «сопротивления материала» есть одновременно воплощение того или иного принципа или ценности личности ученого, реализация его отношения к миру, момент общения, образование нового понимания, видения предметного материала.

Добавление 1. Нужно отметить, что галилеевская революция была в значительной мере подготовлена новым пониманием природы, «как стесненной искусством». Ко времени выхода в свет работ Галилея непосредственное понимание природы уступает место другому – природа все больше понимается как артефакт. В связи с этим Л. Косарева обращает внимание на то, что в работах Галилея «уравниваются в правах “естественное” и “искусственное”, которые в античности мыслились как нечто принципиально несоединимое. Появление в науке этой новой идеи отражает огромную “работу” европейской культуры по уравниванию статуса “натуры” и “техники-искусства”, достигшей кульминации в эпоху Ренессанса и Реформации; именно в эпоху Возрождения впервые снимается граница, которая существовала между наукой (как постижением сущего) и практически-технической, ремесленной деятельностью – граница, которую не переступали ни античные ученые, ни античные ремесленники: художники, архитекторы, строители… С XVII в. начинается эпоха увлечения всем искусственным. Если живая природа ассоциировалась с аффектами, отраслями, свойственными “поврежденной” человеческой природе, хаотическими влечениями, разделяющими сознание, мешающими его “центростремительным” усилиям, то искусственные, механические устройства, артефакты ассоциировались с систематически-разумным устроением жизни, полным контролем над собой и окружающим миром. Образ механизма начинает приобретать в культуре черты сакральности; напротив, непосредственно данный, естественный порядок вещей, живая природа, полная таинственных скрытых качеств, десакрализуется» [52, с. 29–30].

Добавление 2. Галилей не ставил своей специальной целью получение знаний, необходимых для создания технических устройств, для определения параметров реальных объектов, которые можно положить в основание таких устройств. Когда он вышел на идею использования наклонной плоскости и далее определил ее параметры, то он решал эту задачу как одну из побочных в отношении основной – построения новой науки, описывающей законы природы. Гюйгенс же своей основной задачей ставит задачу, которая по отношению к галилеевской выступает как обратная. Если Галилей считал заданным определенный природный процесс (свободное падение тела) и далее строил знание (теорию), описывающее закон протекания этого процесса, то Х. Гюйгенс ставит перед собой обратную задачу: по заданному в теории знанию (соотношению параметров идеального процесса) определить характеристики реального природного процесса, отвечающего этому знанию. На самом деле, как показывает анализ работы Гюйгенса, задача, которую он решал, была более сложная: определить не только характеристики природного процесса, описываемого заданным теоретическим знанием, но также получить в теории дополнительные знания, характеризующие интересные для Галилея природные явления, выдержать условия, обеспечивающие отношение изоморфизма, определить параметры объекта, которые может регулировать сам исследователь. Кроме того, выявленные параметры нужно было конструктивно увязать с другими, определяемыми на основе рецептурных соображений так, чтобы в целом получилось действующее техническое устройство, в котором бы реализовался природный процесс, описываемый исходно заданным теоретическим знанием. Другими словами, Х. Гюйгенс пытается реализовать мечту и замысел техников и ученых Нового времени: исходя из научных теоретических соображений, запустить реальный природный процесс, сделав его следствием человеческой деятельности. И надо сказать, это ему удалось. Конкретно инженерная задача, стоящая перед Гюйгенсом, заключалась в необходимости сконструировать часы с изохронным качанием маятника, т. е. подчиняющимся определенному физическому соотношению (время падения такого маятника от какой-либо точки пути до самой его низкой точки не должно зависеть от высоты падения). Анализируя движение тела, удовлетворяющее такому соотношению, Гюйгенс приходит к выводу, что маятник будет двигаться изохронно, если будет падать по циклоиде, обращенной вершиной вниз. Открыв далее, «что развертка циклоиды есть также циклоида», он подвесил маятник на нитке и поместил по обеим ее сторонам циклоидально-изогнутые полосы так, «чтобы

при качании нить с обеих сторон прилегала к кривым поверхностям. Тогда маятник действительно описывал циклоиду» [39, с. 12–33].

Таким образом, исходя из технического требования, предъявленного к функционированию маятника, и знаний механики, Гюйгенс определил конструкцию, которая может удовлетворять данному требованию. Решая эту техническую задачу, он отказывается от традиционного метода проб и ошибок, типичного для античной и средневековой технической деятельности, и обращается к науке. Гюйгенс сводит действия отдельных частей механизма часов к естественным процессам и закономерностям и затем, теоретически описав их, использует полученные знания для определения конструктивных характеристик нового механизма. Такому выводу предшествовали исследования по механике, идущие в русле идей «Бесед…». Не забывает Гюйгенс при этом и своей конечной цели. «Для изучения его (маятника) природы, – пишет он, – я должен был произвести исследования о центре качания… Я здесь доказал ряд теорем… Но всему я предпосылаю описание механического устройства часов…» [39, с. 10].

Другими словами, Гюйгенс опирается на установленные Галилеем отношения между научным знанием (идеальными объектами) и реальным инженерным объектом. Но если Галилей показал, как приводить реальный объект в соответствие с идеальным и, наоборот, превращать этот идеальный объект в «экспериментальную» модель, то Гюйгенс продемонстрировал, каким образом полученное в теории и эксперименте соответствие идеального и реального объектов использовать в технических целях. Тем самым Гюйгенс и Галилей практически осуществили то целенаправленное применение научных знаний, которое и составляет основу инженерного мышления и деятельности. Для инженера всякий объект, относительно которого стоит техническая задача, выступает, с одной стороны, как явление природы, подчиняющееся естественным законам, а с другой – как орудие, механизм, машина, сооружение, которые необходимо построить искусственным путем («как другую природу»). Сочетание в инженерной деятельности «естественной» и «искусственной» ориентации заставляет инженера опираться и на науку, из которой он черпает знания о естественных процессах, и на существующую технику, где он заимствует знания о материалах, конструкциях, их технических свойствах, способах изготовления и т. д. Совмещая эти два рода знаний, инженер находит те «точки» природы и практики, в которых, с одной стороны, удовлетворяются требования, предъявляемые к данному объекту его употреблением, а с другой – происходит совпадение природных процессов и действий изготовителя. Если инженеру удается в такой двухслойной «действительности» выделить непрерывную цепь процессов природы, действующую так, как это необходимо для функционирования создаваемого объекта, а также найти в практике средства для «запуска» и «поддержания» процессов в такой цепи, то он достигает своей цели. Так, Гюйгенс смог показать, что изохронное движение маятника может быть обеспечено конструкцией, представляющей собой развертку циклоиды. Падение маятника, видоизмененное такой конструкцией, вызывало естественный процесс, соответствующий как научным знаниям механики, так и инженерным требованиям к механизму часов.

В своем трактате Гюйгенс перечисляет задачи, которые ему необходимо было решить: пришлось развернуть учение Галилея о падении тел, доказав ряд новых теорем, изучить развертки кривых линий (в результате Гюйгенс создал теорию эволют и эвольвент), провести исследование о центре качания маятника и, наконец, воплотить полученные знания в конкретном механическом устройстве часов. С работ Гюйгенса естественно-научные знания (механики, оптики и др.) начинают систематически использоваться для создания разнообразных технических устройств. Для этого в естественной науке инженер-ученый выделяет или строит специальную группу теоретических знаний. При этом именно инженерные требования и характеристики создаваемого технического устройства влияют на выбор таких знаний или формулирование новых теоретических положений, которые нужно доказать в теории. Эти же требования и характеристики (в случае исследования Гюйгенса – это было требование построить изохронный маятник, а также технические характеристики создаваемых в то время механических конструкций) показывают, какие физические процессы и факторы необходимо рассмотреть (падение и подъем тел, свойства циклоиды и ее развертки, падение весомого тела по циклоиде), а какими можно пренебречь (сопротивлением воздуха, трением нити о поверхности). Наконец, исследование теории позволяет перейти к первым образцам инженерного расчета.

Расчет в данном случае, правда, предполагал не только применение уже полученных в теории знаний механики, оптики, гидравлики и т. д., но и, как правило, их предварительное построение теоретическим путем. Расчет – это определение характеристик технического устройства, исходя, с одной стороны, из заданных технических параметров (т. е. таких, которые инженер задавал сам и мог контролировать в существующей технологии) и, с другой – из теоретического описания физического процесса, который нужно было реализовывать техническим путем. Описание физического процесса бралось из теории, затем определенным характеристикам этого процесса придавались значения технических параметров и, наконец, исходя из соотношений, связывающих в теории характеристики физического процесса, определялись те параметры, которые интересовали инженера. В трактате о часах Гюйгенс провел несколько расчетов: длины простого изохронного маятника, способа регулирования хода часов, центров качания объемных тел. Фактически уже теории Архимеда содержали своеобразные расчеты (например, устойчивости плавающих тел), и возможно великий ученый античности рассчитывал с их помощью технические конструкции. Однако для Архимеда расчет – деятельность, лежащая за пределами науки. Рассчитать техническое сооружение, в понимании Архимеда, вероятно, не что иное, как определить один из частных случаев существования математической идеи (сущности). Для ученого такого калибра, как Архимед, подобные задачи вполне можно было решить, и, судя по созданным им механизмам, он их решал (и не однажды).

Исследование Гюйгенса интересно еще в одном отношении: в его работе приводятся не только описания соответствующих математических кривых и движущихся по этим кривым тел (т. е. идеальные объекты математики и механики), но также изображение конструкции часов или их элементов (например, циклоидально изогнутых полосок). Такое соединение в одном исследовании описаний двух разных типов объектов (идеальных и технических) позволяет не только аргументировать выбор и построение определенных идеальных объектов, но и понимать все исследование особым образом: это и не чисто научное познание, и не просто техническое конструирование, а именно инженерная деятельность.

Итак, вырисовывается следующая картина. Ученый или философ Нового времени реализует себя главным образом в мышлении. За счет этого мышление функционирует и развивается. Если личность ученого (философа) отвечает в плане ценностных установок и возможностей запросам своего времени, как это было, например, с Ф. Бэконом и Галилеем, и, кроме того, способствует продолжению традиции мышления (что, однако, предполагает их переосмысление), то создаются реальные предпосылки для научного творчества. Еще одна предпосылка – поддержание мыслительной коммуникации, то есть преодоление непонимания, разъяснение и обоснование своей позиции, полемика с другими точками зрения и т. п.

Поделиться с друзьями: