Настольная книга диабетика
Шрифт:
Определение компенсационных коэффициентов производится опытным путем. Для определения К1 следует взять монокомпонентный продукт, богатый углеводами (например, хлеб или гречневую кашу), после чего производится подбор дозы инсулина, необходимой для компенсации определенного количества этого продукта, измеренного в ХЕ. Условием компенсации является приведение сахара крови к исходному значению через определенное время (для обычных «коротких» инсулинов – через 3,5—4 часа). Это означает, что вся съеденная пища компенсирована полностью и без перебора. Затем введенная доза делится на количество ХЕ и получается коэффициент К1 – количество инсулина, нужное для компенсации одной ХЕ. Аналогичным образом определяется коэффициент К2 на продукте, не содержащем углеводы (разница лишь в том, что в случае К2 учитывается калорийность съеденного продукта). Более детально процедура настройки рассмотрена на сайте автораВ начале использования программы коэффициенты автора равнялись соответственно 1.7 и 0.7, а через два с половиной года,
Другим важным источником данных для расчета являются характеристики продуктов, хранящихся в базе данных. В настоящий момент вместе с программой поставляется обширная база данных, охватывающая характеристики множества продуктов. Разумеется, ее можно расширять и корректировать; при этом объем базы данных не ограничен ничем, кроме гастрономических пристрастий пользователя. Кроме простых продуктов с известными характеристиками предусмотрен ввод многокомпонентных блюд с заранее неизвестными характеристиками. На этапе ввода программа сама сделает анализ рецептов этих блюд, рассчитает их характеристики и внесет блюда в базу данных. В дальнейшем на основе этого анализа, программа будет применять к тому или иному блюду нужный алгоритм расчета.
Последним исходным данным является количество продукта, которое пользователь желает съесть и для которого надо рассчитать дозу. Этот параметр зависит от точности определения веса продукта или блюда, так что на первом этапе пользования программы необходимы бытовые весы. В дальнейшем, по мере приобретения опыта расчетов, нужда в них постепенно отпадает.
Как уже отмечалось выше, на компенсацию влияет вид применяемого инсулина или комбинации инсулинов. Так, автор одновременно использует «короткий» хумулин Р и «сверхбыстрый» хумалог. В этом случае программа рассчитает не только общую компенсационную дозу, но и даст рекомендации по пропорциям разделения этой дозы по видам инсулина.
Рассмотрим работу с программой – например, в том случае, когда пользователь решил пообедать (при этом не важно, сколько пищи он собрался съесть). Его задача такова: сообщить компьютеру, что именно и в каком количестве он желает съесть, нажать кнопку «Расчет» и моментально получить компенсационную дозу. Фактически для этого надо лишь «нащелкать» мышкой в расчетную таблицу нужные продукты из базы данных и указать их количество. Программа рассчитывает не только компенсационную дозу, но и характеристики трапезы: количество в ней ХЕ, белков, жиров и углеводов, их процентное распределение, распределение килокалорий по компонентам пищи. Разумеется, предусмотрена оперативная коррекция компенсационных коэффициентов, зависящая от внешних факторов (времени суток, физической нагрузки). Для определения компенсационных доз в отрыве от компьютера имеется возможность сделать расчеты заранее и распечатать их (такие предварительные расчеты производятся по базе данных для фиксированного количества продуктов 25 г, 50 г, 75 г и т. д. Подобную распечатку можно взять с собой в гости, за город, в ресторан и тому подобные места. Определение доз с помощью распечатки менее точно, чем дома, но все же точнее, чем «на глаз».
В заключение необходимо отметить, что программа русскоязычная и распространяется автором бесплатно. Подробнее с ней можно ознакомиться на упоминавшемся выше сайтеТам же имеется форум, где обсуждается использование программы, даются рекомендации и ответы на вопросы пользователей и где можно скачать программу с ее подробным описанием. В описание рассмотрена не только технология использования программы, но и другие моменты, касающиеся диабета.
3. Радикальные решения
Но все-таки сколь удивительными ни оказались бы уже существующие новые препараты и методы, с их помощью не решить главной проблемы: своевременного и адекватного инсулинного отклика на уровень глюкозы крови. Обеспечивая отклик шприцем или таблеткой, а не иным, более совершенным способом, мы остаемся рабами своего лекарства, а в более широком смысле – заложниками и невольниками болезни. Возможны ли тут радикальные решения?
Да, безусловно. Видимо, это будет второй взрыв – или прорыв – в способах выживания при диабете, обусловленный достижениями в сфере электроники. Первый шаг в этом направлении – инсулиновый дозатор (помпа или наружный насосик) – уже сделан, причем довольно давно. Представьте себе прибор размером с сигаретную пачку с капсулой для хранения инсулина, который вы носите на поясе в области живота; в нем имеется трубка с иглой (катетером), постоянно введенной под кожу (что, конечно, его большой недостаток), и таймер (измеритель времени), который можно программировать, – и в соответствии с заданной программой он сам введет вам в нужное время нужную дозу. Это еще не искусственная поджелудочная железа, но уже полный аналог того «запрограммированного» многопикового инсулина, о котором мы говорили выше. Впрочем, как полагают специалисты, вряд ли за таким дозатором будущее; ведь он – всего лишь усовершенствованная шприц-ручка и не подходит для спортсменов и людей, занятых физическим трудом: игла раздражает кожу, а наличие отверстия в коже увеличивает вероятность инфекции. В России к этому добавляется еще одна проблема – с обслуживанием. Нам известны двое петербуржцев, получивших
такой прибор в подарок от фирмы-производителя, но не использующих его в настоящее время. Причина проста – необходимо покупать за рубежом дорогостоящие капсулы с инсулином.Чтобы создать искуственную поджелудочную железу (ИПЗ), необходимо избавиться от внешнего программирования; такой прибор, снабженный компьютером, должен, как настоящая железа, с а м знать, когда и столько ввести инсулина. Главной проблемой в данном случае является не автоматическая инъекция инсулина, а определение сахара крови – не зная этого, компьютер ИПЗ не сумеет рассчитать потребную в данный момент дозу инсулина. А в этом-то и заключается вся суть дела – ведь ИПЗ должен обеспечить точно такую же автоматическую обратную связь глюкоза-инсулин, какая осуществляется поджелудочной железой.
Мы уже знакомы с методами анализа сахара крови, и поэтому упомянутая выше проблема может показаться нам неразрешимой. Анализы проводятся наполовину химическим методом, и для них, в той или иной степени, нужны тест-полоски и другие специальные реактивы, а также человеческие руки. Можно ли выполнить данный анализ полностью автоматическим путем? Без вмешательства человека? Да еще при условии, что прибор-анализатор должен быть небольшим?.. Крайне сомнительно.
Вспомним, однако, что смысл анализа, произведенного человеком, заключается в том, чтобы получить видимый глазами результат, то есть число. Компьютеру число тоже понятно – и, получив его, компьютер может рассчитать нужную дозу инсулина и дать команду на инъекцию. Но это наш, человеческий способ мышления, плохая попытка заставить компьютер воспроизвести наши манипуляции с глюкометром и шприцем. А зачем это, собственно, нужно? Ведь поджелудочная железа никаких чисел не определяет и работает не по дискретно-цифровому, а по аналоговому принципу. Это значит, что количество глюкозы в крови напрямую, без всякой оцифровки, инициирует секрецию определенного количества инсулина, то есть «потенциал» глюкозы порождает адекватный отклик «потенциала» инсулина. Такие процессы в электронике давно известны и носят название аналоговых.
Итак, ИПЗ можно создать, а раз можно, то ее и создали – лет пятнадцать назад. Пятнадцать лет! Этот факт вас несомненно поразит. Вы спросите: где же эта искусственная поджелудочная железа? Почему вы никогда не видели подобного прибора? Лишь потому, что он слишком велик и несовершенен, либо мал, дорог, но опять-таки несовершенен.
Прибор «Стационарная искусственная поджелудочная железа» – «Биостатор» фирмы «Майлз» (США – Германия) представляет собой установку в виде чемоданчика с откинутой крышкой, и носить его с собой постоянно нельзя. «Биостатор» содержит три основных блока: анализатор с датчиком глюкозы и системой непрерывного взятия крови; управляющий компьютер (к которому в старом варианте прибора подключалось печатающее устройство, а в современной модификации – монитор); насос с системой для оперирования с растворами инсулина и глюкозы. Словом, если вы захотите воспользоваться этой ИПЗ, то вам придется возить ее с собой на тележке.
Разумеется, «Биостатор» предназначен не для этого. С его помощью ликвидируют острые состояния при диабете, к нему подключают больных с лабильным течением болезни, нормализуя им сахара. Осуществляется такая операция за 3—7 приемов, и время каждого подключения составляет от четырех часов до суток.
Для индивидуального использования предназначен другой прибор, который называется «Искусственная бета-клетка» (ИБК). По внешнему виду ИБК представляет собой пластинку размером 2Ѕ2 сантиметра, которая имплантируется в воротную вену больного (воротная вена – один из крупных кровеносных сосудов). Прибор состоит из пяти функциональных блоков: сенсора, чувствительного к сахару крови, микрокомпьютера, блока питания (батарейки), насоса для введения инсулина и резервуара с высококонцентрированным инсулином. Уже это краткое описание порождает ряд вопросов: на сколько хватает инсулина?.. на сколько хватает батарейки?.. какова цена такого устройства?.. сколь часто его следует заменять?.. Ответим, что прибор, разработанный в начале восьмидесятых годов, был довольно несовершенен: его ресурсов хватало на небольшой срок, операцию по вживлению приходилось повторять часто, а кроме того, существовала проблема тканевой несовместимости, то есть внешнее покрытие ИБК не соответствовало тканям человеческого организма, что вызывало реакцию отторжения. В наше время некоторые вопросы уже сняты, и современный ИБК может функционировать в организме больного в течение трех – пяти лет. Но стоит такой прибор очень дорого, и применять его в массовых масштабах пока что нельзя.
Мы полагаем, что третий прорыв в лечении диабета будет наиболее радикальным и многообещающим, связанным не с электроникой, а с достижениями в области физиологии. Возможно, будет найден способ восстановления активности бета-клеток (то есть полного или частичного излечения диабета); возможно, будут разработаны надежные методы по имплантации чужеродных бета-клеток или по замене поджелудочной железы. Такие операции уже выполняются на протяжении ряда лет и состоят в том, что больному пересаживают половину здоровой железы от донора. Процедура очень непростая и дорогая, причем основной проблемой, возникающей при операциях такого рода, является иммунологическая несовместимость тканей – организм больного отторгает чужеродную железу, не желает признавать ее своей.