Натуральные антибиотики. Природная альтернатива фармакологическим препаратам
Шрифт:
В 1990 году E. coli с БЛРС было всего 3,6 %, в 1993 году – 14,4 %, а в 1995 году в среднем по Европе таковых оказалось 25 %. Рекордсменом стала Франция, там на долю кишечных палочек с БЛРС пришлось 40 %. До недавних времен единственными антибиотиками, которые могли совладать с БЛРС-резистентными штаммами клебсиелл, были карбапенемы. Их предшественник полимиксин малоэффективен и очень часто приводит к серьезному повреждению почек.
На сегодняшний день полностью резистентные штаммы Клебсиелл – это обычное явление. По аналогии с MRSA, был введен акроним CRKP, т. е. карбапенем-резистентная Клебсиелла пневмонии [6] . Эти бактерии практически непобедимы; умирает 40 % инфицированных. «Это очень серьезные инфекции. Вдобавок ко всему ситуацию усугубляет тот факт, что мы очень ограничены в выборе лечения», – сетует Аджун Шринивасан из Центра по контролю и профилактике заболеваний, расположенного в городе
6
Абберевиатура расшифровывается как «Carbapenem-Resistance Klebsiella pneumoniae». – Прим. науч. ред.
Серьезная вспышка инфекции, вызванной CRKP, случилась в марте 2010 года в Южной Калифорнии (еще одна произошла в марте 2011 года в Лос-Анджелесе, как раз когда я заканчивал работу над рукописью). Брэд Спеллберг от лица Лос-Анджелесского биомедицинского исследовательского института (Los Angeles Biomedical Research Institute), что вблизи города Торранс, штат Калифорния, прямо заявляет: «В ближайшие десять лет у нас не будет доступных средств, способных одолеть эту бактерию… На данный момент лечения инфекции, вызванной CRKP, не существует, и его появления пока не предвидится» (5).
То же самое говорит Нил Фишман из Американского общества эпидемиологии здравоохранения (Society for Healthcare Epidemiology of America): «Лекарства последней надежды у нас больше нет» (6).
Не меньшую опасность представляют панрезистентные псевдомонады (Pseudomonas) и ацинетобактеры (Acinetobacter). У псевдомонад также начинает вырабатываться устойчивость к карбапенемам; сегодня эту бактерию можно победить только с помощью полимиксинов. Ацинетобактеры, кишечная палочка и клебсиеллы делятся друг с другом новым полезным геном NDM-1, который делает их неуязвимыми перед лицом многих антибиотиков, в том числе карбапенемов. «Это просто ужасно, – признается Тимоти Уолш, микробиолог и специалист по резистентным бактериям из Кардиффского университета. – В разработке нет ни одного антибиотика, активного против энтеробактерий, вырабатывающих фермент NDM-1. Ближайшие десять лет или около того обещают стать для нас настоящим испытанием» (7).
Отныне с трудом поддаются лечению и энтерококковые инфекции. Вот что пишет Джордж Элиопулос, врач инфекционного отделения Медицинского центра Бет-Изрейел (Beth Israel Deaconess Medical Center) в Бостоне, штат Массачусетс:
«Как ни прискорбно, но в последние годы энтерококки, устойчивые к действию многих антибактериальных агентов, стали все сильнее превалировать во внутрибольничном пространстве… Больше половины энтерококковых изолятов оказались устойчивы к тетрациклину, левофлоксацину и комбинации антибиотиков хинупристин-дальфопристин; 28 % устойчивы к ампициллину; и примерно 20 % не восприимчивы к ванкомицину. Что касается устойчивости к ванкомицину, то американские врачи, работающие в отделениях интенсивной терапии, сообщают о более угрожающих цифрах. Ген резистентности к ванкомицину, вначале появившийся у энтерококков, сейчас обнаруживается у некоторых клинических изолятов Золотистого стафилококка (S. aureus). Это подтверждает опасение специалистов, высказанное более десяти лет назад. Уже тогда они предупреждали, что ванкомицин-резистентный энтерококк может послужить источником генов, которые обеспечат стафилококкам устойчивость к гликопептидам – базовым антибиотикам, использующимся для лечения инфекций, вызванных метициллин-резистентными штаммами (MRSA) (8).
На данный момент для борьбы с этими резистентными штаммами не разрабатывается ни одного антибиотика. Последним достижением стал тигециклин, но он появился на рынке в далеком 2005 году. Тигециклин не действует на резистентных псевдомонад, зато активен против резистентных штаммов ацинетобактеров. На сегодняшний день с ацинетобактерами может справиться только этот антибиотик и его более опасный предшественник полимиксин. Хотя должен признаться, что полимиксин уже начинает сталкиваться с устойчивыми к нему формами этой коварной бактерии. Та же учесть ждет и тигециклин.
«Если бы не было тигециклина, нам было бы нечем лечить такие инфекции, – признается Спеллберг, а затем с прискорбием добавляет: – резистентность к тигециклину распространится спустя два года после появления препарата. Это уже происходит. Недавно я был на восточном побережье и посетил там одну из больниц. Ее врачи сказали мне, что у них почти все внутрибольничные ацинетобактеры полностью устойчивы к тигециклину» (9).
Сегодня, посещая больницы даже для проведения каких-то незначительных процедур, люди рискуют подцепить неизлечимую инфекцию. Более 70 % всех внутрибольничных патогенных бактерий обладают хотя бы минимальной резистентностью; бактерии, которые мы сейчас упомянули, особенно
опасны, так как они резистентным к самым базовым антибиотикам. Вот что говорит Сью Фишер, медсестра, специализирующаяся на онкологическом профиле: «Детишек привозят на короткое время, чтобы провести лечение, а на следующий день они начинают жаловаться на боль в боку, а еще через день внезапно умирают. Мы проводим вскрытие и понимаем, что всему виной резистентные бактерии, которые поразили практически каждый орган. Все происходит очень быстро, и остановить это у нас не получается» (10).В первом издании книги я рассказывал о двенадцати резистентных патогенных бактериях, которые вызывают у ученых нешуточное беспокойство. В этой книге их будет двадцать одна. Это не считая различных подвидов, которые на сегодняшний день тоже приобрели устойчивость (их как минимум сорок без учета вариаций), и прочие микроорганизмы, угрожающие нам в самом ближайшем будущем. Как и предупреждали эпидемиологи, ситуация усугубляется экспоненциально, и выхода из нее пока никто не видит.
Некоторые микроорганизмы, например, метициллин-резистентный Золотистый стафилококк (MRSA), уже вызывают серьезные проблемы в больницах и в обществе по всему миру. Другие, такие как Клостридиум диффициле, захватывают все большее пространство и становятся все опаснее. А есть и те, которые только начинают пополнять ряды резистентных бактерий, например, Стенотрофомонас мальтофилия (Stenotrophomonas maltophilia).
Большая часть резистентных патогенов – это либо грамположительные, либо грамотрицательные бактерии (их перечень вы найдете далее). Также в нашем списке будет один паразитический протист [7] (малярийные паразиты), один род плесневых грибов (аспергиллы) и один род дрожжеподобных грибов (кандида) – все они тоже приобретают опасную устойчивость. Паразитический протист – это Плазмодиум фальципарум (Plasmodium falciparum), вид простейших паразитов, вызывающих малярию; плесневый гриб – это Аспергилл (Aspergillus spp.), а точнее Аспергилл дымящий/A. fumigatus, Аспергилл желтый/A. flavus и Аспергилл земляной/A. terres; а дрожжеподобный гриб – это Кандида (Candida spp.). Кандида альбиканс (Candida albicans) – доминирующий вид, но далеко не единственный, относящийся к числу резистентных.
7
Протисты – группа, к которой относят все эукариотические организмы, не входящие в состав животных, грибов и растений. – Прим. науч. ред.
Грамположительные и грамотрицательные бактерии называются так из-за их способности окрашиваться по Граму. Окрашивание по Граму – это метод идентификации бактериальных клеток, а разделение на тех и других обусловлено различием структуры их клеточной стенки.
Что такое окрашивание по Граму?
Ганс Грам (1853–1938) обнаружил, что если нанести на бактерии кристаллический фиолетовый краситель, под микроскопом их становится лучше видно. Разные виды бактерий абсорбируют краситель по-разному, тем самым позволяя ученым их легко идентифицировать.
У нас с вами есть кожа, а у бактерий есть наружные мембраны, т. е. клеточные стенки, которые окружают их «тельца». Внутренняя среда клетки называется цитоплазма; цитоплазму покрывает цитоплазматическая мембрана, а уже потом идет клеточная стенка. Клеточная стенка преимущественно состоит из полимера пептидогликана. У грамотрицательных бактерий есть вторая стенка, так называемая внешняя мембрана. Между этими двумя мембранами у грамотрицательных бактерий имеется отделение – периплазматическое пространство. У грамположительных бактерий второй мембраны нет, поэтому их клеточные стенки гораздо толще. Это позволяет им защититься от внешнего воздействия.
По причине наличия одной-единственной стенки, пусть даже и толстой, грамположительные бактерии проще уничтожить. А что касается грамотрицательных бактерий, то здесь нужно пройти уже не через одну стенку, а через две. По сути, у бактерий есть две возможности идентифицировать и деактивировать враждебное к ним антибактериальное вещество. Проникнув в периплазматическое пространство, антибиотик, как правило, не в силах убить бактерию. Для этого ему нужно преодолеть вторую стенку.
В ответ на антибиотик грамотрицательные бактерии запускают ряд высокосинергичных реакций, в основе которых лежат три базовых механизма. Первый – это двойная клеточная стенка. Второй – особая группа ферментов – бета-лактамазы, – которые очень эффективно деактивируют бета-лактамные антибиотики (антибиотики, которые чаще всего используют для борьбы с такими бактериями). И третий – это разного рода эффлюксные насосы. Как я уже говорил ранее, эффлюксные насосы выполняют функцию дренажных насосов; они выкачивают антибиотические соединения из «тела» бактерии сразу же после их попадания внутрь, так что она остается абсолютно невредимой.