Необъятный мир: Как животные ощущают скрытую от нас реальность
Шрифт:
Без этой способности легко переносить низкие температуры суслики не смогли бы зимовать. Их организм делал бы то же самое, что и наш, когда мы мерзнем во сне: начинал бы жечь жир, чтобы выработать тепло, а если это не помогает, автоматически просыпался бы. Для нас это спасение. Для суслика посреди зимы это гибель. Спячка ему необходима, и чтобы ее обеспечить, нужно соответствующим образом настроить все сенсорные системы. Это не значит, что сусликам холод нипочем. Просто у них другое представление о том, что такое холод, – другой нижний температурный порог, за которым организм перестает справляться и чувства начинают бить тревогу.
Температура имеет огромное влияние на все живое. Если она слишком низка, скорость химических реакций замедляется до бесполезно черепашьей. Если она слишком высока, белки и другие жизненно важные молекулы теряют структуру и распадаются. Из-за этого для большинства форм жизни на Земле существует некий диапазон температур «в самый раз». Границы
Животные используют самые разнообразные температурные детекторы, из которых сейчас лучше всего изучена группа белков под названием «TRP-каналы» (Transient receptor potential channels, «каналы переменного рецепторного потенциала»){335}. Они расположены по всему организму на поверхности сенсорных нейронов и функционируют как крохотные воротца, открывающиеся при достижении нужной температуры. В этот момент ионы устремляются в нейрон, электрический сигнал передается к мозгу, и мы ощущаем тепло или холод. Какие-то TRP-каналы настроены на высокие температуры, какие-то на низкие. (Холод – это не просто отсутствие тепла, это отдельное, совершенно самостоятельное ощущение[108].) Кроме того, разные TRP-каналы ориентированы на температуры разной степени экстремальности: одни работают в безобидном умеренном диапазоне, другие срабатывают, зафиксировав опасные и болезненные крайности. Реагируют они и на определенные химические вещества, вызывающие ощущение жара или холода. Жгучий перец жжется, поскольку содержащийся в нем капсаицин включает TRPV1 – TRP-канал, распознающий болезненно высокие температуры[109]. Мята холодит за счет ментола, активирующего детектор холода под названием TRPM8.
Такие детекторы обнаруживаются у всех животных, но у каждого вида они представлены в уникальной, слегка отличающейся от других версии, приспособленной к особенностям именно этого организма и его образа жизни. Теплокровные животные обогревают себя сами, поэтому их версия детектора холода TRPM8 бьет тревогу, если температура тела опускается ниже границы узкого, комфортного для них диапазона. У крысы эта граница проходит на отметке 24 °C{336}. У курицы, у которой обычная температура тела чуть выше, TRPM8 настроен на 29 °C. Холоднокровные животные, наоборот, получают тепло из окружающей среды, поэтому температура тела у них колеблется в довольно широком диапазоне. Соответственно и TRPM8 у них, как правило, настроен на гораздо более низкое значение – 14 °C у лягушек, например. У рыб TRPM8, судя по всему, нет вообще, и большинство из них спокойно переносят температуры, близкие к минусовым{337}. Даже если они чувствуют боль, понятия «лютая стужа» и «обжигающий холод» им, видимо, незнакомы. У отдельных представителей человеческого рода температурные предпочтения тоже различаются, но в масштабах всего царства животных эти вариации гораздо шире.
А что там у сусликов? Матос-Круз обнаружила, что их версия TRPM8 очень похожа на имеющуюся у других теплокровных грызунов, однако из-за нескольких мутаций у нее сильно снижена чувствительность{338}. На ментол она реагирует, а вот на низкие температуры – вплоть до 10 °C – почти нет. Это отчасти объясняет, как сусликам удается благополучно зимовать в условиях, которые нам бы показались невыносимыми[110].
Подстраивается под потребности своих обладателей (прежде всего под температуру их тела) и белок TRPV1, который распознает болезненный жар{339}. У курицы он активируется при +45 °C, у мышей и человека – при +42 °C, у лягушки – при +38 °C, а у данио-рерио – при +33 °C (детектор холода этим рыбкам, наверное, ни к чему, зато им явно пригождается детектор тепла). У каждого вида свое понятие о том, что такое горячо. Наша обычная температура будет пыткой для данио-рерио. Температуру, которая мыши покажется пеклом, курица даже не почувствует. Однако есть среди животных два вида, перещеголявших и курицу, – это обладатели наименее чувствительных версий TRPV1 из исследованных на данный момент, что позволяет им выдерживать жар, который другие живые существа терпеть не в состоянии. Один из них, как и следовало ожидать, – корабль пустыни, верблюд-бактриан. А вот второй – надо же! кто бы мог подумать! барабанная дробь… – тринадцатиполосный суслик! Скромный грызун, которого я держал на ладони, выдерживает не только температуру, близкую к минусовой, но и зашкаливающий жар. В экспериментах с нагреваемыми панелями у Грачевой суслики перескакивали на более прохладную, только если та, на которой они сидели, раскалялась до 55 °C{340}. Неудивительно, что они в изобилии водятся по всей территории США, от Миннесоты на севере до Техаса на юге. Их температурными детекторами обусловлены их ареал, сезон их активности и многое другое. Задавая диапазон
температур, которые животное может ощущать и выносить, корректируя его личные пределы горячего и холодного, эти белки определяют, где, когда и как будут жить их обладатели.А кто-то живет в крайне экстремальных условиях. Обитающие в Сахаре муравьи-бегунки Cataglyphis bombycina кормятся при полуденном зное, когда температура песка величайшей пустыни нашей планеты достигает 53 °C{341}. Аналогичные температуры какое-то время выдерживает и помпейский червь, живущий около выходов подводных вулканов – «черных курильщиков». Хионея, или зимний комар, сохраняет активность при –6 °C, ледяной червь мезенхитреус водится в ледниках; оба они погибнут, если подержать их в руке{342}. Изучая этих так называемых экстремофилов, исследователи интересуются прежде всего их адаптивными особенностями – такими как теплоотводящие щетинки на теле или самопальный антифриз в крови. Но что толку от этих приспособлений, если сирены сенсорной системы организма будут постоянно вопить, включая ощущение боли (или ноцицепции)? Хотите жить в Сахаре – или на дне океана, или на леднике – перестраивайте чувства так, чтобы такая жизнь им нравилась.
Казалось бы, вполне логичный подход, но почему-то, когда мы смотрим на экстремофилов – будь то императорские пингвины, шлепающие по бескрайним антарктическим льдам, или верблюды, бредущие по раскаленным пескам, – мы невольно жалеем их, думая, что всю свою жизнь они ужасно мучаются. Мы восхищаемся не только их физиологической выносливостью, но и психологическим мужеством. Мы проецируем на них собственные ощущения: если нам в таких условиях было бы плохо, значит, и им несладко. Однако их чувства настроены на температуру среды обитания. Верблюда, скорее всего, не беспокоит палящее солнце, а пингвинов не страшат бурные ледяные волны. Пусть себе бушуют – холод пингвинам явно не страшен.
Мой домашний термостат сейчас установлен на 21 °C. Но это не значит, что во всем доме именно такая температура. Я работаю в гостиной, окна которой выходят на юг, и там значительно теплее, чем в других помещениях. В тот момент, когда я печатаю эту строчку, моя макушка греется на солнце, а ноги под столом охлаждаются в тени. Вариации возможны и между более близкими участками: в 5 мм от поверхности моей кожи температура будет градусов на десять ниже, чем прямо на ней, поэтому лапкам мухи, севшей мне на руку, будет теплее, чем крыльям{343}. Такие маленькие существа быстро принимают температуру окружающей среды. Если бы муха села мне на голову, она рисковала бы всего за несколько секунд опасно нагреться под солнцем{344}. Но температурные датчики на кончиках ее антенн такого, скорее всего, не допустят.
Нейробиолог Марко Галлио продемонстрировал эффективность этих датчиков, помещая дрозофил в камеру с по-разному подогреваемыми отсеками (по сути, это тот же эксперимент, который проводила Матос-Круз с сусликами и нагреваемыми панелями){345}. Галлио установил, что дрозофилы охотно остаются в отсеках, где поддерживаются их любимые 25 °C, и избегают соседних отсеков с температурой 30 °C, которая им не нравится, и 40 °C, которая для них смертельна. Причем решение они принимают молниеносно: оказываясь на границе «горячей зоны», они резко разворачиваются в полете, словно наткнувшись на невидимую стену.
Маневрировать подобным образом им позволяет высокая теплопроводность хитина, из которого состоят их антенны, а также крошечный размер этих антенн. Их температура сравнивается с температурой окружающей среды настолько быстро, что муха сразу чувствует, что угодила в холодный или горячий фронт. Как выяснил Галлио, антенны могут работать и как стереотермометр, фиксирующий градиент тепла – примерно как ноздри у собаки в силу своей парности фиксируют градиент запаха. Между двумя своими антеннами муха улавливает разницу в ничтожные 0,1 °C и устремляется в сторону более комфортной температуры. Слушая рассказ Галлио о полученных им результатах, я невольно вспоминаю, как двигались все виденные мной мухи. Их траектории, всегда такие хаотичные и случайные, теперь обретают осмысленность: муха как будто пробирается по полосе препятствий, лавируя между теплыми и холодными участками, которые я не ощущаю и сквозь которые иду напролом.
Эта способность двигаться в зону желаемой температуры, называемая термотаксисом, широко распространена в животном царстве[111]. Создания большие и малые определяют с помощью своих детекторов, не стала ли окружающая среда непригодной, и следят за тем, как меняется температура по ходу движения. Как в детской игре в «горячо-холодно», большинство животных по изменениям температуры непосредственно окружающей их среды оценивают тепловые градиенты, создаваемые солнцем и тенью, ветром и течениями. Однако некоторым удалось превратить эту совершенно заурядную способность в особое умение: они умудряются определить, насколько точка А теплее точки Б, не перемещаясь туда. Они умеют активно выискивать источники тепла на расстоянии.