Чтение онлайн

ЖАНРЫ

Необъятный мир: Как животные ощущают скрытую от нас реальность
Шрифт:

В 1971 г. у Кальмейна получилось это доказать{733}. Он продемонстрировал, что мелкопятнистая кошачья акула всегда отыщет вкусную камбалу, даже если та зароется в песок – и даже если камбалу закопают в песок и окружат со всех сторон слоем из агар-агара, не пропускающим наружу запахи и механические сигналы. И только если камбалу дополнительно накрывали электроизолирующим пластиковым листом, акула ее теряла. Когда Кальмейн убрал камбалу и сымитировал присущее ей слабое электрическое поле с помощью двух закопанных в песок электродов, эти акулы «настойчиво рыли дно в том месте, где находился источник поля, и раз за разом реагировали на электроды как на камбалу», писал он. Точно так же клюют на зарытые электроды и дикие акулы{734}. Некоторые поступают так с рождения{735}.

Электрическое чувство у акул называется пассивной электрорецепцией, и оно отличается от того, которое мы рассматривали до сих

пор{736}. Акулы и скаты не создают электрическое поле целенаправленно, чтобы определять местонахождение окружающих объектов, они просто пассивно улавливают электрические поля других животных – главным образом своей добычи[234]. Это они проделывают мастерски, наверное, лучше, чем любая другая группа живых существ[235]. Как установил Стивен Кадзиюра, один вид мелких акул-молотов распознает электрическое поле напряженностью всего в один нановольт – одну миллиардную вольта – на сантиметр воды[236]. Но электрическое чувство у акул действует лишь на небольшом расстоянии{737}. Акула не может учуять закопанную рыбу (или электрод) с другого края океана – или даже с другого края бассейна. Она должна оказаться на расстоянии вытянутой руки от своей цели. Добычу, которая находится от акулы за многие километры, она ищет по запаху{738}. Приближаясь, переключается на зрение. Затем за работу принимается боковая линия. Электрическое чувство вступает в игру только на завершающем этапе охоты, когда нужно точно определить местоположение добычи и нацелиться для атаки. Поэтому ампулы Лоренцини обычно сосредоточены вокруг пасти[237].

Пассивная электрорецепция особенно полезна при поисках спрятавшейся добычи. Как ни крути, естественное электрическое поле живое существо отключить не в состоянии[238]. Но если акула не может воспользоваться остальными чувствами – допустим, когда добыча зарылась, как в эксперименте Кальмейна, – охотнице приходится плавать вокруг, пока ее ампулы Лоренцини не окажутся достаточно близко к цели. У некоторых видов для оптимизации такого поиска развилась очень крупная голова. Так, у акулы-молота передняя часть головы из острого конуса превратилась в приплюснутую широкую поперечину, напоминающую антикрыло у автомобиля{739}. Этим «молотом», с нижней стороны нашпигованным ампулами, эти рыбы пользуются по принципу металлоискателя, водя им по морскому дну в поисках зарытых съедобных сокровищ. Электрическая чувствительность у них примерно такая же, как у других акул, однако благодаря такой форме головы они сканируют за единицу времени большую площадь.

То же самое делает и рыба-пила. В действительности эта рыба – скат, однако тело у нее больше напоминает акулье, а голова похожа на средневековое холодное оружие. Нос рыбы-пилы оканчивается длинной узкой пластиной, ощетинившейся с обеих сторон устрашающе острыми зубами. Эта «пила», составляющая порой треть длины тела ее обладательницы, сверху и снизу напичкана ампулами. Она существенно увеличивает область электрического восприятия, вынося ее далеко вперед, – очень полезное свойство в мутной воде{740}. «Они нам попадаются даже в реках, где мы винта своей лодки различить не можем», – говорит Барбара Вюрингер, изучающая этих рыб. Как ей удалось выяснить, пила служит им одновременно и сенсором, и оружием{741}. Когда над пилой проплывает потенциальная добыча, рыба пронзает, оглушает и рассекает ее этой же пилой. А затем, когда раненая добыча опускается на дно, хищник отыскивает ее с помощью нижней стороны своей пилы. «Каждый раз, когда я это вижу, в голове проносится: "Как это вообще возможно?"» – признается Вюрингер[239].

Способность улавливать электрические поля имеется не только у акул и скатов{742}. У позвоночных этим чувством обладает примерно каждый шестой вид{743}. В этот список входят миноги – змееподобные рыбы с зубастыми присосками вместо челюсти; латимерия – древняя рыба, считавшаяся вымершей, пока в 1930-ее гг. не обнаружили живой экземпляр; другие группы древних рыб, включая веслоносов, которые в поиске добычи пользуются длинным носом, полным электрорецепторов, примерно так же, как рыба-пила своей пилой; мормировые и гимнотообразные, чувствующие чужое электрическое поле не хуже своего собственного; тысячи видов сомообразных, многие из которых охотятся на электрических рыб; а также некоторые земноводные, такие как саламандра и напоминающие больших червей цецилии, они же червяги.

Электрическое чувство встречается даже у млекопитающих[240]. Им обладает по крайней мере один вид дельфинов – гвианский дельфин, обитающий в Южной Америке, – хотя, какой ему прок от жалких 8–14 электрорецепторов, когда в его распоряжении имеется эхолокация, вообразить трудно{744}. Точно так же непонятно, как используют электрорецепторы на кончике своего носа ехидны –

австралийские яйцекладущие млекопитающие, напоминающие массивного ежа{745}. Возможно, они выискивают с их помощью мелких насекомых, снующих во влажной земле. У ближайшего родственника ехидны, утконоса, на знаменитом утиноподобном клюве находится больше 50 000 электрорецепторов{746}. Ныряя в поисках добычи, он лихорадочно водит клювом туда-сюда, как акула-молот своей поперечиной. Поскольку под водой глаза, уши и ноздри утконоса закрыты, он может рассчитывать только на осязание и электрическое чувство.

Глядя на эту немаленькую компанию обладателей электрорецепции, можно сделать три важных вывода{747}. Во-первых, это древнее чувство. Электрорецепторы образовались из боковой линии очень давно, и вполне может статься, что общий предок всех ныне живущих позвоночных ощущал электрическое поле. У нас с вами электрического чувства нет, но наш прапрапрародитель, живший 600 млн лет назад, почти наверняка им обладал. Во-вторых, на протяжении своей эволюции позвоночные утрачивали электрическое чувство как минимум четыре раза, поэтому у миксин, лягушек, пресмыкающихся, птиц, почти всех млекопитающих и большинства рыб его нет[241]. В-третьих, утратив это чувство, некоторые группы позвоночных, в том числе утконосы и ехидны, гвианские дельфины и электрические рыбы, обрели эту имевшуюся у их предков, но отсутствующую у современных родственников способность заново[242]. Мормировые и гимнотообразные рыбы – это отдельная статья{748}. На противоположных концах планеты они независимо друг от друга успешно выработали три разных типа электрорецепторов – для пассивного улавливания электрического поля других рыб, для активного ощущения поля, создаваемого ими самими, и наконец, для распознавания поля других электрических рыб[243]. История мормировых и гимнотообразных – блестящий пример конвергентной эволюции, в результате которой две разные группы живых существ случайно являются на праздник жизни в одинаковых нарядах.

Запутанная история электрического чувства указывает, кроме того, на важное отличие электрорецепторов. Мозг разговаривает на языке электричества, и как мы уже не раз наблюдали, животные в процессе эволюции изобретают самые изощренные способы преобразования света, звука, пахучих веществ и других стимулов в электрические сигналы. Электрорецепторы же просто переводят электричество в электричество. Это единственный из органов чувств, который улавливает как раз то, что составляет движущую силу наших мыслей. Возможно, выработать в ходе эволюции электрорецептор не так уж трудно, и потому на эволюционном древе позвоночных они то пропадают, то появляются вновь.

У электрорецепторов, на первый взгляд, имеется одно существенное ограничение: они работают только при погружении в электропроводящую среду. Вода совершенно точно подходит, так что неудивительно, что почти все уже знакомые нам обладатели электрорецепции относятся к водоплавающим[244]. Воздух же, наоборот, выступает изолятором: сопротивление у него в 20 млрд раз выше, чем у воды{749}. Поэтому ученые с полным на то основанием долго считали, что на суше электрическое чувство просто невозможно.

А потом Дэниел Роберт провел потрясающий эксперимент со шмелями.

Ежедневно в мире бушует около 40 000 гроз. В совокупности они превращают атмосферу нашей планеты в гигантский электрический контур. Когда молния бьет в землю, положительный электрический заряд передается вверх, поэтому в верхних слоях атмосферы накапливается положительный заряд, а на поверхности планеты – отрицательный. Этот перепад электрического потенциала в атмосфере – сильное электрическое поле, протянувшееся от земли до неба{750}. Даже в ясный солнечный день напряженность электрического поля в воздухе составляет около 100 В/м. Стоит мне где-то это упомянуть, непременно кто-то придет сообщить, что в тексте, видимо, опечатка. Так вот нет, уверяю вас, все верно: градиент напряжения у вас за порогом составляет минимум 100 В/м.

Жизнь существует в электрическом поле планеты и подвергается его воздействию. Цветы, поскольку они полны воды, заземлены и поэтому несут на себе такой же отрицательный заряд, как и почва, на которой они растут. Пчелы же в полете накапливают положительный заряд, возможно потому, что теряют электроны с поверхности тела при столкновении с пылинками и прочими микроскопическими частицами. А когда положительно заряженная пчела оказывается рядом с отрицательно заряженным цветком, искры, конечно, не летят, зато летит пыльца. Притянутые противоположным зарядом пыльцевые зерна перескакивают на пчелу еще до того, как она сядет на цветок{751}. Это явление было описано десятки лет назад. Но Дэниел Роберт, прочитав о нем, понял, что электрическое взаимодействие пчел и цветов явно должно таить в себе что-то еще. (С Робертом мы уже встречались в главе о слухе, когда знакомились с его исследованием мух-тахин Ormia.)

Поделиться с друзьями: