Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует
Шрифт:
В 1960-х было предложено другое решение для этой общей проблемы: различия между объединяемыми явлениями зависят от обстоятельств, но не только от точки зрения отдельных наблюдателей. Вместо этого физики сделали то, что, на первый взгляд, кажется элементарным наблюдением: Законы могут иметь симметрию, которая не соответствует всем особенностям мира, к которому они применяются.
Позвольте мне сначала проиллюстрировать это с помощью наших социальных законов. Наши законы применяются одинаково ко всем людям. Мы можем расценить это как симметрию законов. Замените одну персону на любую другую, и вы не измените законов, которым они должны подчиняться. Все должны платить налоги, все должны не превышать лимит скорости. Но это равенство или симметрия перед законом не нуждается и не требует того, чтобы наши обстоятельства были одинаковыми. Некоторые из нас богаче других. Не все из
Более того, в идеальном обществе мы все стартуем с одинаковых возможностей. К сожалению, на самом деле это не так, но если бы это было так, мы могли бы говорить о симметрии в наших стартовых возможностях. В ходе жизни эта начальная симметрия заканчивалась бы. К моменту достижения двадцатилетия мы имеем очень различающиеся возможности. Некоторые из нас имеют возможность быть концертирующими пианистами, а некоторые олимпийскими атлетами.
Мы можем описать эту дифференциацию, сказав, что начальное равенство нарушено с течением времени. Физики, которые говорят о равенстве как о симметрии, скажут, что симметрия между нами при рождении нарушена посредством ситуаций, с которыми мы сталкиваемся, и посредством выбора, который мы делаем. В некоторых случаях будет тяжело предсказать способ, по которому симметрия будет нарушена. Мы знаем, что она должна нарушиться, но, глядя на полный младенцев детский сад, мы очень затруднимся предсказать, как это произойдёт. В подобных случаях физики говорят, что симметрия спонтанно нарушена. Под этим мы понимаем, что необходимо, чтобы симметрия нарушилась, но точный способ, по которому она нарушается, в высшей степени зависит от обстоятельств. Спонтанное нарушение симметрии является вторым великим принципом, который лежит в основе стандартной модели физики частиц.
Есть и другой пример из человеческой жизни. Как член профессорско-преподавательского состава я иногда имел возможность прийти на встречу с новыми студентами. Наблюдая за ними на встречах друг с другом, я, случалось, видел, что в последующие годы некоторые становились друзьями, некоторые любовниками, а некоторые даже женились. В тот первый момент, когда они сталкивались друг с другом как чужие люди, в помещении наблюдалось много симметрии, многие возможные связи и дружеские союзы могли бы быть придуманы в этой группе. Но симметрия с необходимостью должны быть нарушена, так как настоящие человеческие взаимоотношения вырабатываются из намного большего пространства возможных взаимосвязей. Это тоже пример спонтанного нарушения симметрии.
Почти вся структура мира, как социального, так и физического, является следствием требования, что мир в его реальности нарушает симметрии, присутствующие в пространстве возможностей. Важное свойство этого требования заключается во взаимообмене между симметрией и стабильностью. Симметричная ситуация, в которой мы все являемся потенциальными друзьями и романтическими партнёрами, нестабильна. В реальности мы должны сделать выбор, и это приводит к большей стабильности. Мы меняем нестабильную свободу потенциальных возможностей на стабильное ощущение реальности.
То же самое верно и в физике. Общим примером из физики является карандаш, балансирующий на своём острие. Это симметричное состояние, в котором, пока он балансирует на своём острие, все направления (падения) столь же хороши, как и любые другие. Но это состояние нестабильно. Когда карандаш падает, что неизбежно должно произойти, он упадёт хаотически в том или ином направлении, нарушив симметрию. Но, раз уж он упал, состояние стало стабильным, но больше оно не проявляет симметрии — хотя симметрия всё ещё здесь, в лежащих в основании законах. Законы описывают только пространство того, что может произойти; реальный мир управляется теми же законами, включающими выбор одной реализации из множества возможностей.
Этот механизм спонтанного нарушения симметрии можно применить к симметриям между частицами в природе. Когда с симметриями происходит то, что из калибровочного принципа возникают силы природы, это приводит к различию в их свойствах. Силы становятся различимыми; они могут иметь различные области распространения и различные величины. Перед нарушением симметрии все четыре фундаментальные силы имели бесконечную область распространения, как у электромагнетизма, но после нарушения симметрии некоторые из них стали конечными, подобно двум ядерным силам. Как отмечалось, это одно из самых важных открытий физики двадцатого века, поскольку вместе с калибровочным принципом оно позволяет нам объединить фундаментальные силы, которые кажутся несоизмеримыми.
Идея
объединения спонтанного нарушения симметрии с калибровочным принципом была придумана Франсуа Энглером и Робертом Броутом в Брюсселе в 1962 году и, независимо, несколькими месяцами позже Петером Хиггсом из Эдинбургского университета. Её стоило бы назвать ЭБХ-феноменом, но, к сожалению, обычно её называют только феноменом Хиггса. (Это один из многочисленных примеров, в которых нечто в науке получает название по последней персоне, которая это нечто открыла, вместо того, чтобы по первой). Эти трое также показали, что имеется частица, чьё существование является следствием спонтанного нарушения симметрии. Она называется Хиггсовым бозоном.Несколькими годами позже, в 1967 году, Стивен Вайнберг и пакистанский физик Абдус Салам независимо открыли, что комбинация калибровочного принципа и спонтанного нарушения симметрии может быть использована для конструирования конкретной теории, которая объединяет электромагнитные и слабые ядерные силы. Теория носит их имя: модель Вайнберга-Салама электрослабых сил. Это была определённо унификация со следствиями, которую надо было отпраздновать; она быстро привела к предсказаниям новых явлений, которые были успешно проверены. Она предсказала, например, что должны существовать частицы — аналоги фотона, который переносит электромагнитное взаимодействие, — для передачи слабого ядерного взаимодействия. Таких частиц три с названиями W+, W– и Z. Все три были найдены и проявили предсказанные свойства.
Использование спонтанного нарушения симметрии в фундаментальной теории имело чрезвычайные последствия не только для законов природы, но и для более общего вопроса о том, что из себя представляют законы природы; до этого мы думали, что свойства элементарных частиц определяются непосредственно вечно заданными законами природы. Но в теории со спонтанным нарушением симметрии был введён новый элемент, который заключается в том, что свойства элементарных частиц зависят отчасти от истории и от окружения. Симметрия может нарушиться различными способами в зависимости от условий вроде плотности и температуры. Более общо, свойства элементарных частиц зависят не только от уравнений теории, но и от того, какое решение этих уравнений имеет отношение к нашей вселенной. Это сигнализирует об отходе от обычного редукционизма, в соответствии с которым свойства элементарных частиц вечны и устанавливаются абсолютным законом. Это открывает возможность, что многие — или даже все — свойства элементарных частиц зависят от обстоятельств и от того, какое решение законов выбрано в нашем регионе вселенной или в нашу отдельную эру. Они могут отличаться в различных регионах [25] . Они могут даже изменяться во времени.
25
Главная тема книги The Life of the Cosmos <Жизнь космоса> заключалась в следствиях из этих изменений.
В спонтанном нарушении симметрии имеется величина, которая сигнализирует, что симметрия нарушена и каким образом. Эта величина обычно является полем, названным полем Хиггса. Модель Вайнберга-Салама требует, чтоб поле Хиггса существовало и чтобы оно проявлялось как новая элементарная частица, именуемая Хиггсовым бозоном, который переносит силы, ассоциирующиеся с полем Хиггса. Из всех предсказаний, требуемых унификацией электромагнитных и слабых сил, только это предсказание ещё не было подтверждено на опыте. Одна трудность в том, что теория не позволяет нам точно предсказать массу Хиггсова бозона, она является одной из свободных констант, которые теория требует задать извне. Было много экспериментов, направленных на поиски Хиггсова бозона, но всё, что мы знаем, это что, если он существует, его масса должна быть больше, чем примерно 120 масс протона. Одной из главных целей будущих экспериментов на ускорителях является её поиск.
В начале 1970-х калибровочный принцип был применён к сильному ядерному взаимодействию, которое связывает кварки, и было найдено, что калибровочное поле также отвечает и за это. Итоговая теория названа квантовой хромодинамикой, или КХД для краткости. (Слово хромо от греческого «цвет» указывает на образное обозначение, использованное для указания на факт, что кварки бывают трёх версий, которые для красоты названы цветами). КХД тоже выдержала строгий экспериментальный тест. Вместе с моделью Вайнберга-Салама она составляет основу стандартной модели физики элементарных частиц.