Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует
Шрифт:
III
За пределами теории струн
13
Сюрпризы реального мира
Греческий философ Гераклит оставил нам прекрасный афоризм: природа любит скрываться. Это так часто верно. У Гераклита не было способа увидеть атом. Не важно, насколько много его приятели-философы рассуждали по этому поводу, увидеть атом было вне пределов любой технологии, которую они могли представить. В наши дни теоретики нашли великое применение склонности природы к загадочности. Если природа на самом деле суперсимметрична или имеет больше трёх пространственных измерений, она это хорошо скрывает.
Но иногда верно противоположное. Иногда ключевые вещи находятся прямо перед нами, готовые к наблюдению. Скрытыми от незамысловатого
Итак, хотя мы горевали, как тяжело проверять идеи, идущие за теорией струн, нам стоит поинтересоваться, что может быть спрятано вокруг от нашего обычного взгляда. В истории науки было множество примеров открытий, которые удивляли учёных, поскольку они не предугадывались теорией. Нет ли сегодня наблюдений, которые мы, физики, не запрашивали, которые не навлекли на себя теорию, — наблюдений, которые могли бы подвинуть физику в интересном направлении? Нет ли шанса, что такие наблюдения уже были сделаны, но проигнорированы, поскольку, если они подтвердятся, они могли бы помешать нашим теоретизированиям?
Ответ на эти вопросы: да. Имеется несколько недавних экспериментальных результатов, которые указывают на новые явления, непредвиденные для большинства струнных теоретиков и физиков, занимающихся частицами. Ни один полностью не установлен. В нескольких случаях результаты достоверны, но интерпретации спорны; в других случаях результаты слишком новы и удивительны, чтобы быть широко принятыми [76] . Но их стоит описать здесь, поскольку, если любая из этих подсказок выльется в настоящее открытие, тогда имеются важные свойства фундаментальной физики, которые не предсказываются ни одной из версий теории струн, и будет тяжело согласоваться с ними. Другие подходы тогда станут основными, а не факультативными.
76
Часто случается, что удивительные экспериментальные результаты не подтверждаются, когда другие экспериментаторы повторяют эксперимент. Это не означает, что кто-то мошенничает. Эксперименты на грани возможного почти всегда тяжелы для повторения, и типичная трудность заключается в отделении шума от осмысленного сигнала. Часто требуется много лет и много попыток различных людей, прежде чем все источники ошибок в новом виде эксперимента будут поняты и удалены.
Начнём с космологической константы с целью представить тёмную энергию, ускоряющую расширение вселенной. Как обсуждалось в главе 10, эта энергия не была предугадана ни теорией струн, ни большинством других теорий, и у нас нет идеи, как установить её величину. Многие люди тяжело думали над этим на протяжении лет, и мы более или менее нигде. Я тоже не имею ответа, но у меня есть предложение, как мы могли бы найти его. Надо прекратить попытки оценить величину космологической константы в терминах известной физики. Если нет способа оценить явление на основе того, что мы знаем, тогда, может быть, это знак, что нам нужно поискать что-то новое. Возможно, космологическая константа является симптомом чего-то другого, в таком случае она может иметь и другие проявления. Как нам поискать их или опознать их?
Ответ будет простым, поскольку универсальные явления, в конечном счёте, просты. Силы в физике характеризуются только несколькими числами — например, расстоянием, на которое распространяется сила, и зарядом, который говорит, насколько сила велика. Что характеризует космологическую константу, так это масштаб, который является масштабом расстояний, выше которых она искривляет вселенную. Мы можем назвать этот масштаб R. Он порядка 10 миллиардов световых лет или 1027 сантиметров [77] . Что является странным в космологической константе, так это что её масштаб гигантский по сравнению с другими масштабами физики. Масштаб R
в 1040 раз больше размера атомных ядер и в 1060 раз больше планковского масштаба (который составляет примерно 10– 20 от размера протона). Так что логично поинтересоваться, может ли масштаб R отражать некоторую совершенно новую физику. Хорошим подходом мог бы стать поиск явлений, которые происходят на том же самом громадном масштабе.77
Выраженная в терминах R, космологическая константа равна 1/R2.
Происходит ли что-нибудь другое на масштабе космологической константы? Начнём с самой космологии. Самыми точными космологическими наблюдениями, которые мы имеем, являются измерения космического микроволнового фона. Это излучение, оставшееся от Большого Взрыва, которое приходит к нам со всех направлений в небе. Излучение чисто тепловое — то есть, хаотическое. Оно остывало, пока вселенная расширялась, и сегодня находится при температуре 2,7 Кельвинов. Температура однородна по небу с высокой степенью точности, но на уровне нескольких частей на 100 000 в ней имеются флуктуации (см. Рис. 13, вверху). Картина этих флуктуаций даёт нам важную путеводную нить к физике очень ранней вселенной.
За последние десятилетия температурные флуктуации микроволнового фона были картографированы спутниками, детекторами на аэростатах и детекторами, расположенными на грунте. Один из способов понять, что именно измерили эти эксперименты, это подумать о флуктуациях, как если бы они были звуковыми волнами в ранней вселенной. Тогда полезно спросить, насколько громки флуктуации на различных длинах волн. Результаты дают нам картину, такую как на Рис. 13, внизу, которая говорит нам, сколько энергии имеется при различных длинах волн.
В картине доминирует большой пик, за которым следуют несколько пиков поменьше. Открытие этих пиков является одним из триумфов современной науки. Они интерпретируются космологами, чтобы отметить, что заполнявшая раннюю вселенную материя звучала почти похоже на корпус барабана или на тело флейты. Длина волны, на которой вибрирует музыкальный инструмент, пропорциональна его размеру, и то же самое верно для вселенной. Длины волн резонансных мод говорят нам, насколько велика была вселенная, когда она впервые стала прозрачной: то есть, когда начальная горячая плазма перешла или «распалась» на отдельные царства вещества и энергии примерно через триста тысяч лет после Большого Взрыва; в это время микроволновое излучение и стало видимым. Эти наблюдения экстремально полезны в привязке параметров нашей космологической модели.
Рисунок 13. Вверху: как выглядит небо при микроволновых частотах. Сигналы, идущие изнутри нашей галактики, удалены, так что оставлен образ вселенной, каким он был в то время, когда она охладилась до точки, в которой электроны и протоны стали связываться в водород. Внизу: распределение энергии на верхнем изображении при разных длинах волн. Точки представляют данные WMAP и других наблюдений, а кривая соответствует предсказаниям стандартной космологической модели.
Другое свойство, которое мы видим в данных, заключается в том, что в самой большой длине волны содержится мало энергии. Это может быть просто статистическая флуктуация, поскольку эта область содержит незначительное число точек данных. Но если это не статистическая случайность, это может быть интерпретировано как указание на отсечку, выше которой моды возбуждаются намного меньше. Интересно, что эта отсечка находится на масштабе R, связанном с космологической константой.
Существование такой отсечки загадочно с точки зрения наиболее широко принятой теории очень ранней вселенной, а именно инфляции. Согласно теории инфляции вселенная расширялась экспоненциально быстро во время одного экстремально раннего периода. Инфляция объясняет наблюдение, что космическая фоновая радиация близка к однородной. Она делает это, обеспечивая, что все части вселенной, которые мы видим сегодня, находились в причинном контакте, когда вселенная была ещё плазмой.