Нейросети. Обработка аудиоданных
Шрифт:
Это небольшой обзор различных типов архитектур нейронных сетей. Каждая из них имеет свои преимущества и недостатки и может быть настроена для конкретной задачи машинного обучения.
3.2. Обучение нейросетей и выбор оптимальных функций потерь
Обучение нейронных сетей – это процесс, в ходе которого сеть настраивается на определенную задачу путем адаптации своих весов и параметров. Важной частью этого процесса является выбор и оптимизация функции потерь (loss function), которая измеряет разницу между предсказаниями модели и фактическими данными. Выбор оптимальной функции потерь зависит от
Процесс обучения нейронной сети:
1. Подготовка данных: Перед началом обучения нейросети данные должны быть правильно подготовлены. Это включает в себя предобработку данных, такую как масштабирование, нормализацию и кодирование категориальных переменных. Данные также разделяются на обучающий, валидационный и тестовый наборы.
2. Выбор архитектуры сети: В зависимости от задачи выбирается архитектура нейросети, включая количество слоев, количество нейронов в каждом слое и типы слоев (например, сверточные, рекуррентные и полносвязанные).
3. Определение функции потерь: Функция потерь является ключевой частью обучения. Она измеряет разницу между предсказаниями модели и фактическими данными. Выбор правильной функции потерь зависит от задачи: для задачи регрессии часто используется среднеквадратичная ошибка (MSE), а для задачи классификации – кросс-энтропия.
4. Оптимизация: Для настройки параметров сети минимизируется функция потерь. Это делается с использованием методов оптимизации, таких как стохастический градиентный спуск (SGD) или его варианты, включая Adam и RMSprop.
5. Обучение и валидация: Нейронная сеть обучается на обучающем наборе данных, и ее производительность оценивается на валидационном наборе данных. Это позволяет отслеживать процесс обучения и избегать переобучения.
6. Тестирование: После завершения обучения сети ее производительность проверяется на тестовом наборе данных, чтобы оценить ее способность к обобщению.
Выбор оптимальной функции потерь
Выбор функции потерь зависит от конкретной задачи машинного обучения. Рассмотрим распространенные функции потерь:
–
Среднеквадратичная ошибка
(MSE
):
Используется в задачах регрессии для измерения средней квадратичной разницы между предсказанными и фактическими значениями
.
Среднеквадратичная ошибка (Mean Squared Error, MSE) – это одна из наиболее распространенных и широко используемых функций потерь в задачах регрессии в машинном обучении. Ее основное назначение – измерять среднюю квадратичную разницу между предсказанными значениями модели и фактическими значениями в данных. MSE является метрикой, которая позволяет оценить, насколько хорошо модель соответствует данным, и какие ошибки она допускает в своих предсказаниях.
Принцип работы MSE заключается в следующем:
1. Для каждого примера в обучающем наборе данных модель делает предсказание. Это предсказание может быть числовым значением, таким как цена дома или температура, и модель пытается предсказать это значение на основе входных признаков.
2. Разница между предсказанным значением и фактическим значением (истинным ответом) для каждого
примера вычисляется. Эта разница называется "остатком" или "ошибкой" и может быть положительной или отрицательной.3. Эти ошибки возводятся в квадрат, что позволяет избежать проблем с отрицательными и положительными ошибками, которые могут взаимно компенсироваться. Ошибки возводятся в квадрат, чтобы большим ошибкам присваивать больший вес.
4. Затем вычисляется среднее значение всех квадратов ошибок. Это среднее значение является итоговой MSE.
Формула MSE для одного примера (i) выглядит следующим образом:
MSE(i) = (Предсказанное значение(i) – Фактическое значение(i))^2
Для всего набора данных с N примерами формула MSE выглядит так:
MSE = (1/N) * ? (Предсказанное значение(i) – Фактическое значение(i))^2 от i=1 до N
Чем меньше значение MSE, тем ближе предсказания модели к фактическим данным, и, следовательно, модель считается более точной. Однако стоит помнить, что MSE чувствителен к выбросам и может быть неподходящим для задач, где ошибки в предсказаниях могут иметь разную важность.
–
Кросс
–
энтропия
:
Широко применяется в задачах классификации и измеряет разницу между распределением вероятностей
,
предсказанным моделью
,
и фактическими метками классов
.
Кросс-энтропия (Cross-Entropy) – это важная функция потерь, широко используемая в задачах классификации, особенно в машинном обучении и глубоком обучении. Она измеряет разницу между распределением вероятностей, предсказанным моделью, и фактическими метками классов в данных. Кросс-энтропия является мерой того, насколько хорошо модель приближает вероятностное распределение классов в данных.
Принцип работы кросс-энтропии заключается в сравнении двух распределений: предсказанных вероятностей классов моделью и фактических меток классов в данных. Её можно описать следующим образом:
1. Для каждого примера в наборе данных модель выдает вероятности принадлежности этого примера к разным классам. Эти вероятности могут быть представлены в виде вектора вероятностей, где каждый элемент вектора соответствует вероятности принадлежности примера к конкретному классу.
2. Фактичные метки классов для каждого примера также представляются в виде вектора, где один элемент вектора равен 1 (класс, к которому пример принадлежит), а остальные элементы равны 0.
3. Сравнивая вероятности, предсказанные моделью, с фактичными метками классов, вычисляется кросс-энтропия для каждого примера. Формула для вычисления кросс-энтропии для одного примера i выглядит так:
Cross-Entropy(i) = -? (Фактическая вероятность(i) * log(Предсказанная вероятность(i)))
Где ? означает суммирование по всем классам.
4. Итоговая кросс-энтропия для всего набора данных вычисляется как среднее значение кросс-энтропии для всех примеров. Это позволяет оценить, насколько хорошо модель соответствует фактичным данным.
Кросс-энтропия имеет следующие важные характеристики:
– Она может быть использована для многоклассовой и бинарной классификации.
– Она штрафует модель за неверные уверенные предсказания вероятностей, что позволяет сделать её более уверенной и точной.