Чтение онлайн

ЖАНРЫ

Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:

С пластичностью связан и другой аспект выделения нейромедиаторов терминалями. Иногда нейромедиаторы выделяются вовсе не в синаптические щели, а в окружающую межклеточную жидкость, возможно, для воздействия на другие, расположенные на большом удалении нейроны. По-видимому, многие нейрохимические вещества выделяются подобным образом. Существуют различные теории памяти, в которых используются разнообразные сочетания таких веществ, участвующих в процессе запоминания. Конечно, состояние мозга зависит от наличия в нем химических соединений (например, гормонов), выделяемых различными его частями. Проблемы нейрохимии в целом весьма сложны, и пока непонятно, как можно подойти к созданию правдоподобной и полной компьютерной модели мозга.

Параллельные компьютеры и «единственность» сознания

Многие считают, что развитие параллельныхкомпьютеров содержит в себе ключ к построению машин, обладающих возможностями человеческого мозга. Далее мы кратко рассмотрим эту популярную сегодня идею.

Параллельный компьютер, в противоположность

последовательному, может выполнять одновременно и независимо друг от друга огромное число отдельных операций, и результаты этих автономных операций время от времени объединяются, давая вклад в общий вычислительный процесс. Толчком к созданию такого типа компьютерной архитектуры послужили попытки моделирования нервной системы, поскольку, согласно современным представлениям, разные части мозга выполняют практически автономные вычислительные функции (например, при обработке визуальной ин4юрмации в зрительной коре).

Здесь необходимо сделать два замечания. Во-первых, между параллельным и последовательным компьютерами не существует принципиальнойразницы. По сути, оба являются машинами Тьюринга(ср. главу 2 «Тезис Черча — Тьюринга»). Отличие может проявляться только лишь в эффективности, или скорости, вычислений в целом. Для некоторых типов вычислительных процессов параллельная организация, действительно, более эффективна, но это далеко не всегда так. Во-вторых, по крайней мере с моей точки зрения, крайне маловероятно, что классические параллельные вычисления дают ключ к тому, что происходит при сознательноммышлении. Характерным свойством сознательной мысли (по крайней мере в нормальном психологическом состоянии и не после операции по разделению полушарий мозга!) является ее «единственность» — в противоположность множественности выполняемых одновременно и независимо друг от друга операций.

Фразы типа: «Я же не могу думать обо всем сразу?!» можно услышать на каждом шагу. Можно ли вообщедумать о нескольких вещах одновременно? Вероятно, кто-то можетудерживать в голове несколько мыслей в одно и то же время, но это, скорее всего, будет похоже на постоянное перескакивание от одной мысли к другой и обратно, нежели на действительно одновременное, сознательное и независимое их обдумывание. Если бы кто-то мог думать о двух вещах совершенно независимо, то это было бы более похоже на обладание двумя раздельными сознаниями, пусть даже и на короткий промежуток времени, тогда как повседневный опыт (по крайней мере нормальных людей) свидетельствует о наличии единственногосознания, которое может иметь смутное представление о ряде вещей, но которое сконцентрировано в каждый момент времени только на однойиз них.

Конечно, то, что мы подразумеваем здесь под «одной вещью», не совсем ясно. В следующей главе мы познакомимся с совершенно удивительными примерами «отдельных мыслей», появлявшихся в минуты вдохновения у Пуанкаре и Моцарта. Но нам вовсе не обязательно забираться так далеко, чтобы понять, что мысль человека в каждый конкретный момент времени может неявно быть очень сложной. Представьте себе, например, процесс обдумывания обеденного меню. Одна такая мысль может включать в себя такое количество разнообразной информации, что ее полное словесное описание было бы очень долгим.

«Единственность» осознанного восприятия представляется мне идущей вразрез с концепцией параллельного компьютера. С другой стороны, эта концепция может оказаться более подходящей в качестве модели бессознательнойдеятельности мозга. Различные независимые действия (ходьба, застегивание пуговиц, дыхание и даже разговор) могут выполняться человеком одновременно и более менее автономно, причем он может не осознавать ни одноиз них!

С другой стороны, мне кажется, что эта «единственностью» сознания может иметь что-то общее с квантовым параллелизмом. Вспомним, что, согласно квантовой теории, на квантовом уровне различные альтернативы могут сосуществовать в линейной суперпозиции! Отсюда следует, что одиночное квантовое состояниемогло бы, в принципе, состоять из большого числа различных событий, происходящих одновременно. Именно это и подразумевается под квантовым параллелизмом. Мы скоро рассмотрим теоретическую концепцию «квантового компьютера», в котором, в принципе, квантовый параллелизм мог бы быть использован для выполнения большого числа одновременных операций. Если «состояние ума», соответствующее рассудочной деятельности, имеет какое-то сходство с квантовым состоянием, то некая форма «единственности», или глобальности, мысли соответствует ему в большей степени, чем в случае обычного параллельного компьютера. У этой идеи есть несколько привлекательных аспектов, к которым я вернусь в следующей главе. Но прежде, чем рассматривать эту идею всерьез, мы должны ответить на вопрос, могут ли квантовые эффекты иметь какое-либо отношение к деятельности мозга.

Имеет ли квантовая механика отношение к работе мозга?

Все предыдущее обсуждение нервной деятельности проводилось целиком в рамках классических представлений, за исключением тех случаев, когда мы затрагивали физические явления, неявные причины которых отчасти обусловлены квантово-механическими эффектами (например, ионы, несущие единичные электрические заряды; натриевые и калиевые каналы; определенные химические потенциалы, определяющие

триггерный характер генерации нервного импульса; химия нейромедиаторов). Но нет ли таких ключевых процессов в мозге, которые бы непосредственно определялись квантово-механическими эффектами? Для того чтобы рассуждения, описанные в конце предыдущей главы, имели какой-то смысл, такие процессы, по-видимому, должны существовать.

В действительности, можно указать, по крайней мере, одно место, где чисто квантовые явления имеют принципиальное значение для нервной деятельности, — это сетчатая оболочка глаза. (Вспомним, что сетчатка фактически входит в состав мозга!) Эксперименты с жабами показали, что в подходящих условиях адаптированная к темноте сетчатка вырабатывает макроскопический нервный импульс при попадании на нее единичного фотона(Бэйлор и др. [1979]). То же, как выясняется, справедливо и для человека (Хехт и др. [1941]), хотя в этом случае существует дополнительный механизм, который подавляет подобные слабые сигналы, тем самым очищая воспринимаемое изображение от лишнего визуального «шума». Необходимо суммарное воздействие примерно семифотонов, чтобы адаптировавшийся к темноте испытуемый мог его ощутить. Тем не менее, в нашей сетчатке, по-видимому, все-таки есть клетки, чувствительные к попаданию только одного фотона.

Поскольку в теле человека существуютнейроны, способные срабатывать под воздействием единичного квантового события, то вполне обоснован вопрос о наличии таких клеток где-нибудь в основных отделах мозга. Насколько мне известно, это предположение не подтвердилось. У клеток всех изученных типов есть определенный порог срабатывания и требуется очень большое число квантов, чтобы перевести клетку в возбужденное состояние. Однако можно было бы допустить, что где-то глубоко внутри мозга должны быть клетки, чувствительные к одиночным квантам. Если это окажется верным, то квантовая механика должна играть существенную роль в деятельности мозга.

Но даже при таком положении вещей роль квантовой механики оказалась бы чисто номинальной, поскольку квант используется просто как возбудитель сигнала. Никаких интерференционных эффектов, характерных для квантовых явлений, пока обнаружить не удалось. Похоже, что в лучшем случае все, что мы можем получить от квантовой механики, это неопределенность момента срабатывания нейрона. Трудно представить, как это может пригодится нам на практике.

Однако некоторые вопросы, имеющие к этому отношение, не так тривиальны. Для их рассмотрения обратимся вновь к сетчатой оболочке глаза. Предположим, что фотон попадает на сетчатку, предварительно отразившись от полупрозрачного зеркала. Состояние фотона тогда будет представлять собой сложную линейную суперпозицию состояний, когда он попадает в клетку сетчатки и когда он проходит мимо клетки и вместо этого, скажем, улетает через окно в космос (см. рис. 6.17) В тот момент, когда он мог быпопасть в клетку сетчатки, до тех пор, пока выполняется линейная процедура U(т. е детерминированная эволюция вектора состояния по уравнению Шредингера, см. Глава 6. «Эволюционные процедуры Uи R»), мы получим сложную линейную суперпозицию наличия и отсутствия нервного сигнала. Когда это доходит до сознания наблюдателя, воспринимается только однаиз этих двух альтернатив, и должна использоваться другая квантовая Rпроцедура(редукция вектора состояния, см. Глава 6. «Эволюционные процедуры Uи R»). (Говоря так, я сознательно обхожу стороной теорию множественности миров, которая имеет множество своих собственных проблем!) В соответствии с рассуждениями, приведенными в конце предыдущей главы, нам следует задать вопрос, достаточное ли количество материи вовлекается в прохождение сигнала, чтобы удовлетворялся одногравитонный критерий(см. главу 8)? Хотя при преобразовании энергии фотона в энергию движения массы при выработке сигнала в сетчатке достигается действительно гигантское усиление, возможно, до 10 20 раз, эта масса все же значительно меньше величины планковской массы m Рl (примерно в 10 8 раз). Однако нервный сигнал создает регистрируемое изменяющееся электрическое полев окружающей среде (тороидальное поле с осью, совпадающей с нервным волокном, по которому оно перемещается). Это поле может вносить в окружающую средузначительное возмушение, за счет чего одногравитонный критерий будет легко удовлетворен. Таким образом, в соответствии с изложенной мной точкой зрения, Rпроцедурамогла бы выполняться задолго до того, как мы увидим или, может случиться, не увидим вспышку света. К тому же, для редукции вектора состояния наше сознание не требуется!

Квантовые компьютеры

Если мы все-такипредположим, что чувствительные к одиночным квантам нейроны играют важную роль где-то в глубине нашего мозга, то возникает вопрос, какие следствия это могло бы иметь. Для начала я изложу концепцию квантового компьютера, предложенную Дойчем (см. также главу 4 «Сложность и вычислимость в физических объектах»), а затем мы выясним, можно ли ее рассматривать как имеющую отношение к теме нашей дискуссии.

Поделиться с друзьями: