Чтение онлайн

ЖАНРЫ

О том, чего мы не можем знать. Путешествие к рубежам знаний
Шрифт:

В 1665 г., когда в Англии вспыхнула эпидемия бубонной чумы, Кембриджский университет был из предосторожности закрыт. Ньютон вернулся домой, в Вулсторп. Изоляция часто бывает важным ингредиентом изобретения новых идей. Ньютон запирался в своей комнате и размышлял.

Истина – дитя тишины и размышлений. Я постоянно держал предмет своих размышлений перед собой и ждал, пока первые проблески медленно, мало-помалу не разгорятся, превращаясь в яркий и ясный свет.

Будучи изолирован в Линкольншире, Ньютон создал новый язык, способный выразить картину постоянно изменяющегося мира, – язык математического анализа. Этому инструменту предстояло стать ключом к возможности заблаговременного знания о будущем поведении Вселенной. Именно этот язык дает мне надежду узнать, какой стороной может упасть моя игральная кость.

Математические фотографии

Математический

анализ пытается разобраться в математической задаче, которая на первый взгляд кажется бессмысленной: деление ноля на ноль. Когда я роняю свою игральную кость на стол, именно эту задачу мне нужно решить, чтобы узнать мгновенную скорость кости, летящей в воздухе.

Скорость кости постоянно увеличивается, поскольку сила тяжести тянет ее к земле. Как же вычислить, чему равна эта скорость в любой момент времени? Например, с какой скоростью падает кость через одну секунду? Скорость равна пройденному расстоянию, деленному на прошедшее время. Значит, я могу измерить расстояние, которое она пролетит в течение следующей секунды, и получить среднюю скорость за этот период. Но я хочу узнать точную скорость. Я могу измерить расстояние, пройденное за более краткий промежуток времени, скажем, за половину или четверть секунды. Чем меньше длительность такого интервала, тем точнее я могу вычислить скорость. В конце концов для получения точного значения скорости я буду вынужден взять бесконечно малый временной интервал. Но тогда мне придется вычислять результат деления ноля на ноль.

Придуманное Ньютоном исчисление сделало такой расчет возможным. Он понял, как можно вычислить то значение, к которому скорость стремится по мере уменьшения длительности временного отрезка. Этот революционный новый язык смог выразить картину постоянно изменяющегося мира. Геометрия древних греков была совершенным средством для описания статической, застывшей картины мира.

Математический анализ: осмысление деления ноля на ноль

Рассмотрим автомобиль, начинающий движение из неподвижного состояния. В момент включения секундомера водитель нажимает на педаль газа. Предположим, что, согласно нашим измерениям, в течение t секунд водитель проехал t · t м. С какой скоростью машина будет ехать через 10 секунд? Мы можем получить приблизительное значение скорости, измерив расстояние, пройденное автомобилем между 10-й и 11-й секундами. Средняя скорость за эту секунду равна (11 · 11–10 · 10)/1 = 21 м/с.

Но, взяв среднюю скорость на меньшем временном отрезке, скажем, длительностью 0,5 секунды, мы получим:

(10,5 · 10,5 – 10 · 10)/0,5 = 20,5 м/с.

Это, конечно, чуть медленнее, так как автомобиль разгоняется и во вторую половину секунды, которая прошла между 10-й и 11-й, он в среднем едет быстрее. Возьмем теперь еще меньший промежуток. Давайте еще раз разделим его пополам:

(10,25 · 10,25–10 · 10)/0,25 = 20,25 м/с.

Я надеюсь, что ваш внутренний математик уже заметил закономерность. Если взять временной промежуток длительностью х секунд, то средняя скорость за это время будет равна 20 + x м/с. По мере того как мы рассматриваем все меньшие интервалы, она все более приближается к 20 м/с. Так что, хотя кажется, что определение скорости на 10-й секунде требует вычисления частного 0/0, математический анализ позволяет понять, что это означает.

Великое математическое открытие Ньютона дало нам язык, способный описать мир движущийся. Математика перешла от описания натюрморта к воспроизведению движущегося изображения. В науке произошло нечто подобное случившемуся в этот же период перевороту в искусстве, когда динамическое искусство барокко вырвалось из статического искусства Возрождения.

Вспоминая это время, которое он называл «annus mirabilis» [17] , Ньютон считал его одним из самых продуктивных периодов своей жизни. «Я был в расцвете сил и думал о Математике и Философии больше, чем когда-либо после».

17

«Год чудес» (лат.).

Все, что нас окружает, находится в состоянии постоянного изменения, поэтому неудивительно, что эти математические методы приобрели такое большое влияние. Но, с точки зрения Ньютона, математический анализ был инструментом для личного пользования, позволившим ему получить научные выводы, изложенные в «Началах», великом труде, изданном в 1687 г., в котором он описывал свои идеи о гравитации и законах

движения.

Говоря о себе в третьем лице, он объясняет, что его математический анализ был ключом к открытиям, содержащимся в этой книге: «Г-н Ньютон открыл большую часть предложений, изложенных в его “Началах”, при помощи этого нового Анализа». Но никакого описания этого «нового анализа» опубликовано не было. Вместо этого Ньютон частным образом распространял свои идеи среди друзей, но не испытывал никакого желания представить их на суд общественности.

К счастью, теперь этот язык широко доступен, и я лично потратил несколько лет на его изучение, когда учился математике. Но мои попытки познания игральной кости требуют использования математического открытия Ньютона в сочетании с его великим вкладом в физику – знаменитыми законами движения, которыми открываются его «Начала».

Правила игры

Ньютон излагает в «Началах» три простых закона, на которых в огромной степени основывается динамика Вселенной.

Первый закон движения Ньютона: «Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние» [18] .

Это было не так уж и очевидно, например, Аристотелю. Если покатить шар по плоской поверхности, то через некоторое время он остановится. Кажется, что для продолжения его движения необходимо приложить силу. На самом же деле существует скрытая сила, изменяющая скорость шара, – сила трения. Если нашу игральную кость бросить где-нибудь в космосе, вдали от гравитационных полей, она так и будет лететь по прямой линии с постоянной скоростью.

18

Первый закон Ньютона приведен здесь в том виде, в каком он изложен в «Началах»; цитаты из этой книги здесь и далее даны в переводе А. Н. Крылова.

Для изменения скорости или направления движения объекта требуется сила. Второй закон Ньютона объяснял, как именно такая сила изменяет движение, и содержал в себе новый инструмент, созданный для выражения этого изменения. Математический анализ уже позволил мне выразить скорость кости по мере ускорения ее падения к столу. Скорость изменения этой скорости также можно узнать при помощи анализа. Второй закон Ньютона утверждает, что между силой, прилагаемой к объекту, и изменением его скорости существует прямая связь.

Второй закон движения Ньютона: «Скорость изменения движения, или ускорение, пропорциональна приложенной к телу силе и обратно пропорциональна его массе» [19] .

Чтобы понять движение таких тел, как падающая игральная кость, необходимо понять, какие силы могут на них воздействовать. Закон всемирного тяготения Ньютона выявил одну из основных сил, оказывающих влияние, скажем, на падающее яблоко или на планеты, движущиеся в Солнечной системе. Этот закон гласит, что сила, действующая на тело массой m1 со стороны тела массой m2, равна

19

В формулировке самого Ньютона: «Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует».

где G – эмпирическая физическая постоянная, определяющая силу гравитации в нашей Вселенной.

При помощи этих законов теперь можно описать траекторию шара, падающего в воздухе, или планеты, движущейся в Солнечной системе, или же игральной кости, падающей из руки игрока. Но, когда кость падает на стол, возникает следующая проблема. Что происходит в этот момент? Подсказку дает третий закон движения Ньютона: «Когда одно тело прилагает силу к другому, второе тело одновременно прилагает к первому силу, равную ей по величине и противоположную по направлению» [20] .

20

В формулировке Ньютона: «Действию всегда есть равное и противоположное противодействие, иначе – взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны».

Поделиться с друзьями: