Очевидное? Нет, еще неизведанное…
Шрифт:
Можно сделать вывод: если найдена одна система отсчета, в которой для свободного тела выполняется первый закон Ньютона, то этот же закон будет соблюдаться в любой из бесконечного числа систем отсчета, равномерно и прямолинейно движущихся относительно первичной системы.
И с другой стороны, существует бесконечное множество систем отсчета, в которых первый закон Ньютона не соблюдается. А именно: любая из систем, ускоренно движущихся относительно инерциальной системы.
Возможно, предыдущие рассуждения оставили чувство неудовлетворенности. Ведь мы сами утверждали, что необходимо добиваться полной ясности и
Схема рассуждений должна быть примерно такой. Пусть дана какая-то система отсчета: обозначим ее для удобства, скажем, буквой K. В ней мы умеем описывать движение тел и предметов при помощи законов Ньютона. Так, если изучаемое тело изолировано и свободно, оно в нашей системе либо покоится, либо движется с постоянной скоростью V.
Но вот есть другая система отсчета, скажем K1, которая движется относительно К равномерно и прямолинейно с известной нам скоростью v.
При этих условиях мы должны научиться определять положение изучаемого тела в новой системе отсчета. Ведь чтобы ответить на вопрос, каков характер движения тела в новой системе K1, надо знать его координаты в этой системе в любой момент времени.
Иными словами, нужно найти закон перехода от одной системы отсчета к другой.
Найти этот закон довольно просто в самом общем случае, но мы рассмотрим наипростейший, а именно: во-первых, когда система K1 движется с постоянной скоростью вдоль оси x системы K; и во-вторых, когда скорость нашего свободного тела V направлена также вдоль оси x системы K.
Тогда, если в момент t0 = 0 системы отсчета совпадали, то за время t начало координат системы K1 «уедет» на расстояние S = vt. Как видно из чертежа, координаты тела в новой системе можно найти, зная координаты в старой системе и используя очевидные соотношения:
x1 = х – vt;
у1 = у;
z1 = z.
Прошу поверить на слово, что если рассматривать общий случай (скорости V и v направлены не вдоль осей и не совпадают по направлениям), наши выводы останутся правильными.
Но вернемся к примеру. В каждый данный момент времени в старой системе отсчета координаты нашего тела определяются соотношениями:
x = x0 + Vt;
y = y0;
z = z0.
Здесь x0, y0, z0 — координаты тела в начальный момент t = 0.
Вспомнив
формулы для перехода от одной системы к другой, получаем:x1 = x0 + (V – v)t;
у1 = у0;
z1 = z0.
Итак, в новой системе тело снова двигается равномерно и прямолинейно вдоль оси x1, но уже с новой скоростью V1 = V – v.
Иначе говоря, мы доказали, что если первый закон Ньютона справедлив в системе K, то он справедлив и в K1.
Точно так же (хотя с формальной стороны это несколько сложнее) можно показать, что если K1 движется неравномерно или непрямолинейно относительно K, то тело, которое в K покоилось или двигалось с постоянной скоростью, в системе K1 будет двигаться уже неравномерно или непрямолинейно.
И тем не менее в наших рассуждениях есть очень существенный пробел. Когда мы переходили от одной системы отсчета к другой, мы молчаливо допускали, что время в обеих системах течет одинаково. Если внимательно проследить за выводом, то можно увидеть, что в выражении x1 = x0 + (V – v)t величина t по своему смыслу означает время, измеренное в системе K. А строго говоря, чтобы описывать движение тела в системе K1 мы должны вместо t использовать t1, то есть время, измеренное в системе K1. Может быть, в системе K1 к моменту определения координат тело прошло 5 минут, а в системе K только 4?! Но мы молчаливо предполагали, что t1 = t.
Почему мы сделали это предположение?
Только потому, что повседневный опыт убеждает нас в его справедливости [21] .
Однако возникает законный вопрос, что вообще означают слова «время, измеренное в одной системе, время, измеренное в другой системе», какой смысл вкладывается в эти понятия?
Какой физический процесс соответствует символам t1 и t, а, кстати, заодно и x1 и x?
21
Следует еще раз напомнить, что на самом деле t /= t1. Но отличие заметно, только если относительная скорость систем отсчета сравнима со скоростью света.