Чтение онлайн

ЖАНРЫ

Огонь! Об оружии и боеприпасах
Шрифт:

Впрочем, еще один изотоп урана — «двести тридцать третий» — позволяет достичь критичности при массе сборок еще меньшей, чем в случае плутония, правда, ненамного. И получают его при облучении нейтронами тория, которого в земной коре содержится втрое больше, чем урана. Но U233 не вытеснил плутоний: уж очень интенсивно испускает гамма кванты сопутствующий ему изотоп с массовым числом 232, отделить который химически, как мы знаем, невозможно, а «отцеживать» в бесчисленных ступенях разделения — очень накладно. Брать в руки U233 — «чревато».

Известны и другие делящиеся изотопы. В 60-х годах из них грозились сделать «атомные пули» [20] , но, когда их действительно выделили в осязаемых количествах и исследовали, оказалось, что существенных «оружейных» преимуществ перед плутонием они не имеют, а вот по стоимости — превосходят на порядки.

Итак, поверхность сборки (рис. 3.7), содержащей плутоний («черная сердцевина»), искусственно увеличивали, выполняя ее в форме шарового слоя (полой внутри) и заведомо подкритичной, даже — и для тепловых нейтронов, даже — и после окружения ее замедлителем (слой желтоватого цвета). Любителям испускать по каждому поводу гнусавые вопли о поругании секретности, сразу замечу, что эта схема описана Фиттером еще в конце пятидесятых. Плутониевую «сердцевину» всегда собирали из двух тщательно подогнанных половинок, разделять ее на «дольки апельсина», приходило в голову разве что журналистам. Вокруг сборки, из очень точно пригнанных блоков взрывчатки монтировали заряд, также образовывавший шаровой слой. Читатель

и сам догадывается, для чего нужен взрыв: чтобы рвать, метать, деформировать. Но, чтобы сберечь нейтроны, надо и при взрыве хоть и уменьшить радиус сборки, но сохранить ее благородную форму шара, для чего — подорвать слой взрывчатого вещества одновременно по всей его внешней поверхности, чтобы обжать сборку равномерно, со всех сторон. Для этого служила детонационная разводка из поликарбоната — также в форме шарового слоя, плотно прилегающего к заряду взрывчатки.

20

В том, что «новое — это хорошо забытое старое» пришлось на личном опыте убедиться уже в 90-х годах, на заседании одной из комиссий, созданных для рассмотрения изобретения, связанного, правда, не с делением, а с применением так называемого «холодного синтеза», о котором тогда верещали газетные заголовки. Изобретатели обещали «стреляя из пулемета, поливать противника 100-мм снарядами». Признаки фальсификации были явными: в броневых плитах зияли отверстия (якобы — от «пуль холодного синтеза»), в которые можно было просунуть кулак. Заседание началось со скучных препирательств о пороговых и непороговых ядерных реакциях. Чиновная часть комиссии, от которой зависело многое, но мало что понимавшая, улавливала при этом только «научные» слова, употребляемые обеими сторонами. Пустая трата времени вызвала острый внутренний протест, в обеденный перерыв вынудивший съездить за книжкой Глесстона «Действие ядерного оружия». После перерыва пришлось попросить специалистов по ядерным реакциям отдохнуть и задать изобретателям вопросы, проверяя, правильно ли занесены в протокол ответы на них.

В: Вы утверждаете, что источником энергии у вас является синтез, неважно — «холодный» или «горячий»?

О: Да.

В: Согласны ли вы, что в каждом акте синтеза выделяется свободный нейтрон?

О: Да.

В: Верно ли, что энерговыделение при взрыве вашего устройства эквивалентно взрыву нескольких килограммов ВВ?

О: Да.

В: У меня в руках книга Глесстона, там приведены данные об энергии, выделяющейся в акте синтеза — 17 Мэв, что соответствует 2,7х10– 12 Дж, вы согласны?

О: Да.

В: А где лично вы находились при проведении опытов?

О: В блиндаже, метрах в десяти. А какое это имеет значение?

Имело это такое значение, что в каждом из опытов должно было выделиться по 1019– 1020 нейтронов: достаточно было поделить заявленное значение энерговыделения в опыте на энерговыделение в одном акте синтеза, чтобы в том убедиться. В десяти метрах от смертельной дозы нейтронов не мог спасти ни один блиндаж.

Все стали мусолить книжку, раздалось неуверенное беканье изобретателей, что может, у них и «не выделялись нейтроны», на что последовал заготовленный ответ: «Тогда вам надо не размениваться на прикладные мелочи, а сначала заявить об открытии совершенно нового класса ядерных реакций».

Механические поражения в результате взрывных эффектов ядерных реакций начинают превалировать над радиационными, если энерговыделение в сборке превысит несколько тераджоулей (что соответствует примерно килотонне тротилового эквивалента). Если бы даже «атомные пули» и были созданы, то такое мини-оружие по всем меркам было бы ядерным и после его применения остались бы неоспоримые улики: продукты реакций и наведенная радиоактивность, а это дало бы противнику право ответить на «пулеметные» экзерциции полноценным ядерным ударом

Рис. 3.7 Схема ядерного боевого блока

…Предположим, у нас есть всего один детонатор, но кроме него — взрывчатка, по консистенции напоминающая пластилин, причем скорость ее детонации очень стабильна. Попробуем сначала одновременно «развести» детонацию только в две точки. Сначала просверлим в нужных местах два отверстия. Далее, взяв циркуль и, поочередно помещая его ногу в отверстия, произвольным, но одинаковым радиусом сделаем две засечки. Процарапаем или отфрезеруем (но на небольшую, меньшую, чем толщина разводки глубину) две прямые канавки, ведущие от отверстий к точке пересечения засечек. Плотно набьем и канавки и отверстия взрывчатым «пластилином», а в точке пересечения канавок установим наш единственный детонатор. Когда он сработает, детонация пробежит по канавкам абсолютно равные расстояния, а, поскольку скорость ее высокостабильна — в один и тот же момент времени достигнет отверстий. В отверстия также забит взрывчатый «пластилин», в отличие от канавок, находящийся в контакте с основным зарядом, поэтому его детонация «заведет» и основной заряд — одновременно и в двух требуемых точках.

Для инициирования в трех точках задача усложнится. Вспоминаем планиметрию (правда, у нас поверхность не плоская, а сферическая, но — пойдем на такое упрощение): через три точки можно провести окружность одного-единственного радиуса (в центр ее и поместим детонатор), делать засечки произвольным радиусом уже нельзя. Для четырех точек — следующая ступень усложнения: одну из них (лучше — ближайшую к детонатору) придется соединять с детонатором не прямой, а ломаной канавкой, чтобы обеспечить равное с остальными тремя время пробега детонации.

А если точек — несколько десятков, да еще они должны равномерно покрывать всю сферическую поверхность заряда?

Такая задача для сферической поверхности решается с применением методов геометрии Римана. Элемент разводки выглядит как на рис. 3.8, и не на всяком станке, даже — с числовым программным управлением, его можно изготовить.

Рис. 3.8. Элемент детонационной разводки

Все же, на разводку помещали не один, а несколько детонаторов в специальных розетках (рис. 3.9).

Рис. 3.9. Детали боевого блока: носовая часть и розетки электродетонаторов

Оставалось доделать всякую ерунду: установить крышку, подключить кабели, ведущие к детонаторам… Впрочем, что значит — «ерунду»? Операции при сборке «авиационной автоматики» были только одной категории — «ответственные»! Выполнялись они «тройкой». Один громко, с внятной артикуляцией, зачитывал пункт инструкции: «Затянуть гайку, позиция…, ключом, позиция…, с моментом…». Второй повторял услышанное, брал поименованные в соответствующих позициях инструкции гайку и ключ, снабженный измерителем момента, «затягивал». Третий контролировал правильность зачитывания, повторения, соответствие «позиций» и показания измерителя момента. Потом все трое расписывались в соответствующей графе за проведенную операцию (одну из многих тысяч подобных) и каждый знал: в случае чего — «следствие, протокол, отпечатки пальцев…» Таинство производило сильное впечатление на тех, кому пришлось быть его свидетелями, в том числе — и на С. Королева, который позже внедрил аналогичный порядок и в космической отрасли.

Рис. 3.10. На полноразмерном макете малогабаритной МБР «Миджетмен» (не производившейся серийно) хорошо видна конструкция головного зазора ее моноблочной боевой части

…Но вот, во исполнение поступившего с самого «верха» приказа, ракета доставила боевой блок к цели и он «со страшной силой» ударился о землю. Пока удар не превратил блок в подобие жидкости, датчики давления, расположенные в головной части изображенной на рис. 3.7 фиолетовым цветом и хорошо видной на макете рис. 3.10 трубы подают сигнал на

подрыв. Выбор головного зазора летящим боевым блоком занимает несколько сот микросекунд и этого вполне хватает, чтобы одновременно сработали от мощного импульса высокого напряжения все детонаторы, огоньки детонации с постоянной скоростью (около 8 км/с) разбежались по канавкам, а пройдя их — нырнули в отверстия и одновременно во множестве точек подорвали заряд (рис. 3.11 а). Далее следует направленный внутрь взрыв (рис. 3.11 в), который сдавливает сборку давлением более миллиона атмосфер. Поверхность сборки уменьшается, в плутонии почти исчезает внутренняя полость (рис. 3.11 г), а плотность его — увеличивается, причем очень быстро — за десяток микросекунд сжимаемая сборка «проскакивает» критическое состояние на тепловых нейтронах и становится существенно сверхкритичной на нейтронах быстрых.

Рис. 3.11. Анимация: перевод сборки в сверхкритическое состояние при имплозии

…Не знаю, как решит читатель, по-моему — кинограмма рис. 3.11 выглядит довольно живописно. Но, как говаривал товарищ Семплеяров [21] : «Разоблачение совершенно необходимо. Без этого ваши блестящие номера оставят тягостное впечатление. Зрительская масса требует объяснения!».

«Зрительская масса» наверняка догадалась, что сфотографирован не взрыв настоящего ядерного заряда. Но на кинограмме — вообще не взрыв, а анимация. Вместо взрывчатого вещества использован оранжевый порошок бихромата аммония (с его помощью детям часто демонстрируют «вулкан»), «Плутоний» сделан из подкрашенного черной тушью поролона, а «замедлитель» — из термореактивного кембрика, сжимающегося при нагревании. Начало реакции разложения бихромата инициировано при подключении тока к нихромовой проволоке, взятой из «сгоревшего» паяльника и обернутой вокруг полоски целлулоида, которая уложена по внешней поверхности «заряда». В отличие от детонации взрывчатки, реакция в бихромате идет медленно и можно рассмотреть (и сфотографировать самой обычной, даже «телефонной», камерой), как фронт реакции «сходится» к сборке. Существенная некорректность модели в том, что «плутониевая» сборка становится «сверхкритичной» при сжатии ее нагреваемым кембриком, а не «взрывчаткой».

21

Персонаж романа М. Булгакова «Мастер и Маргарита»

…Ну, а в настоящей сборке, через период, определяемый ничтожным временем незначительного замедления быстрых нейтронов, каждый из нового, более многочисленного их поколения добавляет производимым им делением энергию в более чем две сотни МэВ в и без того распираемое чудовищным давлением вещество сборки. В масштабах происходивших явлений, прочность даже самых лучших легированных сталей столь мизерна, что никому и в голову не приходит учитывать ее при расчетах динамики взрыва. Единственное, что не дает разлететься сборке — инерция: чтобы расширить плутониевый шар за десяток наносекунд всего на сантиметр, требуется придать веществу ускорение в десятки триллионов раз превышающее ускорение земного притяжения, а такое вовсе непросто. В конце концов, вещество все же разлетается, прекращается деление, но не интересные события: энергия перераспределяется между тяжелыми, ионизованными осколками разделившихся ядер, другими испущенными при делении заряженными частицами, а также электрически нейтральными гамма квантами и нейтронами. Энергия продуктов реакций — порядка десятков и даже сотен МэВ, но только гамма кванты больших энергий и нейтроны имеют шансы избежать взаимодействия с веществом, из которого была сделана сборка и покинуть место, где начинает зарождаться огненный шар ядерного взрыва. Заряженные же частицы быстро теряют энергию в актах столкновений и ионизаций. При этом испускается излучение, правда, уже не «жесткое» ядерное, а более «мягкое», с энергией на три порядка меньшей, но все же более чем достаточной, чтобы «выбить» у атомов электроны — не только с внешних оболочек, но и вообще все. Мешанина из «голых» ядер, «ободранных» с них электронов и излучения с плотностью в граммы на кубический сантиметр [22] — все то, что мгновение назад было зарядом — приходит в некое подобие равновесия. В совсем «молодом» огненном шаре устанавливается температура порядка десятков миллионов градусов. Если шар захватывает сталь, в ней (именно в ней, а не вокруг нее) поднимается ветер [23] .

22

Попытайтесь представить, как хорошо можно «загореть» под светом, приобретшим плотность алюминия

23

«Железный ветер в лицо» ощущают только политработники, строчащие книги с такими названиями, а регистрируют скоростной напор и турбулентные «завихрения» стали специальные датчики

Казалось бы, даже и «мягкое», но двигающееся с максимально возможной скоростью света излучение должно оставить далеко позади вещество, которое его породило, но это не так: в «холодном» воздухе, пробег квантов кэвных энергий составляет сантиметры и двигаются они не по прямой, а, при каждом взаимодействии переизлучаясь, меняя направление движения. Кванты ионизируют воздух, распространяются в нем как вишневый сок, вылитый в стакан с водой.

Такое называют радиационной диффузией. Энергия вещества пропорциональна четвертой степени его температуры, поэтому на этой стадии она «умещается» в небольшом объеме. «Молодой» огненный шар через несколько десятков наносекунд после завершения мощной [24] вспышки делений имеет радиус три метра и температуру почти 8 млн. кельвинов. Но уже через 30 микросекунд его радиус составляет 18 метров, правда, температура падает — «всего лишь» менее миллиона градусов.

24

В приводимом примере число делений в десятки триллионов раз больше, чем в трагическом эксперименте доктора Слотина, а выделение энергии эквивалентно взрыву сотни килотонн тротила

Рис. 3.12. Молодой огненный шар ядерного взрыва малой мощности.
Снимок сделан с выдержкой 10 наносекунд

Шар пожирает пространство, а ионизованный воздух за его фронтом почти не двигается: передать ему значительный импульс при диффузии излучение не может. Но оно накачивает в этот воздух огромную энергию [25] , нагревая его и, когда энергия излучения иссякает, шар начинает расти за счет расширения горячей плазмы из воздуха. К тому же, изнутри шар распирает то, что раньше было зарядом. Полностью ионизованный воздух прозрачен и на фотографиях это можно увидеть (рис. 3.13а). Расширяясь, подобно надуваемому пузырю, оболочка из вещества заряда истончается. В отличие от пузыря, ее, конечно, ничто не «надувает»: с внутренней стороны почти не остается вещества, все оно летит от центра по инерции, но через 30 микросекунд после взрыва скорость этого полета — более сотни километров в секунду, а гидродинамическое давление в веществе — более 150 тысяч атмосфер! Чересчур уж тонкой стать оболочке не суждено, она лопается, образуя «волдыри» (рис. 3.13б). Кстати, если все произошло на небольшой высоте, то плазма теряет форму шара, что видно из фотографий. Там, где вещество заряда ударяет в грунт, давление и температура умножаются по сравнению со значениями на «свободном» фронте. Так и было задумано: большинство целей «авиационной автоматики» (хотя и не все) находится на земле.

25

В газодинамической фазе взрыва образование ударной волны происходит вследствие двух причин: при мощном взрыве ее формирует расширяющаяся плазма нагретого радиационной диффузией воздуха; при взрыве малой мощности — то же делает «плазменный пузырь» из вещества, бывшего до взрыва зарядом (рис. 3.12); понятно, что возможен и промежуточный случай, когда эффективны оба механизма

Поделиться с друзьями: