Оптический флюорит
Шрифт:
Все оптические характеристики флюорита высокостабильны. Эти особые свойства определяют незаменимость оптического флюорита при создании высококорректированных оптических систем (апохроматов, планапохроматов), обеспечивающих высокое качество изображения и ограничение хроматических аберраций. Вместе с тем прозрачность и достаточно большая дисперсия флюорита в УФ-области спектра обусловливают его использование в объективах современных ультрафиолетовых микроскопов и при изготовлении призменной оптики в вакуумных приборах (спектрографах, монохроматорах и др.).
Благоприятные механические, технические и эксплуатационные характеристики кристаллов флюорита в сочетании с прозрачностью в широком спектральном диапазоне, высокой оптической однородностью, отсутствием двойного лучепреломления, люминесценции, высокой радиационной устойчивостью и лучевой прочностью определяют и ряд новых его практических применений в тепловидении и фурье-спектроскопии, астрономии, космической технике,
Области практического применения оптического флюорита непрерывно расширяются, в связи с чем энергично возрастают и потребности в этом уникальном оптическом материале.
Свойства флюорита, в том числе и оптические, определяются его конституцией, т. е. химическим составом и кристаллической структурой.
Рис. 4. Различные модели кристаллической структуры флюорита
Объяснение в тексте
Флюорит (по химической номенклатуре — фтористый кальций CaF2) состоит из атомов кальция (51,33%) и фтора (48,67%), закономерно упакованных по принципу гранецентрированной кубической кристаллической решетки. Это значит, что если мы соединим мысленно все взаимодействующие друг с другом атомы по кратчайшим расстояниям между ними прямыми линиями, то получим регулярную пространственную решетку, которая состоит из бесконечного множества совершенно одинаковых элементарных ячеек, как бы размножающихся в пространстве. Кристаллохимики называют такие ячейки параллелепипедами повторяемости.
Элементарная ячейка флюорита представляет собой куб, разделенный на восемь маленьких кубиков — октантов. Ионы кальция (Ca2+) располагаются по вершинам большого куба и по центрам каждой из его граней, а ионы фтора (F– ) — в центрах каждого октанта. Каждый ион фтора оказывается, таким образом, окруженным четырьмя ионами кальция (FCa4), располагающимися по вершинам тетраэдра, который называется координационным, а каждый ион кальция находится внутри координационности куба, образованного восемью ионами фтора (CaF8).
Если изобразить ионы кальция и фтора разноцветными шариками, то элементарная ячейка флюорита будет выглядеть так, как показано на рис. 4, а. На первый взгляд кажется, что в ней слишком много ионов кальция. Но нужно учесть, что каждый ион кальция в вершинах ячейки принадлежит восьми ячейкам, а располагающийся на грани — двум ячейкам. Так что «собственных» ионов кальция здесь всего (1 : 8•8+1 : 2•6), ионов фтора — восемь, а число формульных единиц CaF2 в ячейке z — четыре. Если шарики, изображающие ионы, «раздуть» до их истинных размеров, характеризуемых эффективными радиусами (Са2+ = 1,04 A, F– = l,33 A), то получим более близкую к реальной, хотя и менее наглядную модель структуры флюорита (см. рис. 4, б). Структуру флюорита можно изобразить также в виде анионных полиэдров — Ca-кубов или катионных F-тетраэдров. Размер ребра элементарной ячейки 0 = 5,46295±0,00010 A.
Рассмотренная схема кристаллической структуры флюорита является идеальной. Реальная структура несколько сложнее, и это связано прежде всего с тем, что во флюорит, кроме кальция и фтора, в тех или иных количествах входят атомы некоторых других элементов. Ионы F– могут частично замещаться кислородом О2-, но основные вариации химического состава связаны с изоморфными замещениями Са2+ на Ag+, Cd2+, Ge2+, Cu+, Hg2+, In3+, Mn2+, Sn2+, Sr2+, Sb3+, Tl3+, Pb4+, Th4+, U4+ и особенно на двух- и трехвалентные ионы редкоземельных элементов — TR2+(Sm2+, Eu2+, Yb2+ и др.) и TR3+(Y3+, Се3+, La3+, Lu3+ и др). Элементы-примеси присутствуют во флюорите обычно в незначительных количествах, однако содержание редких земель иногда может достигать десятков процентов. Максимально возможное содержание TRF3 во флюорите, не разрушающее его структуру, 50%. Механизм замещения двухвалентного кальция трехвалентным иттрием или другими редкими землями довольно своеобразный. Ионные радиусы этих элементов близки
друг другу (Y3+ = 0,97 A, Са2+ = 1,04 A), и при вхождении YF3 в структуру CaF2 иттрий занимает места ионов кальция. При этом две трети ионов фтора заполняют все тетраэдрические позиции, которые им и положено занимать, а одна треть их входит в октаэдрические пустоты между катионами кальция, бывшие в CaF2 незаполненными. В результате такого изоморфизма «с заполнением пространства» плотность и показатель преломления иттрофлюорита по сравнению с флюоритом повышаются, увеличивается параметр элементарной ячейки до 0 = 5,50 A. При замещении кальция трехвалентными ионами редкоземельных элементов происходит компенсация избыточного заряда эквивалентными количествами ионов О2-, Na+ и других элементов по схемамCa2+ + F– – > TR3+ + O2-,
2Ca2+– > TR3+ + Na+ и т. п.
Вхождение изоморфных примесей во флюорит изменяет многие его структурно-чувствительные физические свойства.
Большое влияние на свойства флюорита оказывают структурные дефекты. Структура кристаллов флюорита, как и вообще любых других кристаллов, всегда содержит множество локальных нарушений (точечных, линейных, плоскостных, объемных), возникающих в процессе кристаллизации в результате «ошибок» при встраивании в кристалл кристаллообразующих частиц, вхождении чужеродных примесных элементов, захвате включений и т. п.
Для кристаллов флюорита характерны все типы точечных дефектов. К простейшим точечным дефектам относятся вакансии, образующиеся в результате того, что в узлах решетки отсутствуют ионы кальция (такие дефекты называются дефектами Шоттки). Другой тип точечных дефектов (дефекты Френкеля) образуется, когда атом (ион) из узла решетки перемещается в междоузлие. Вызываемые ими нарушения в решетке строго локализованы — размеры их сравнимы с межатомными расстояниями. К точечным дефектам также относятся комплексы из небольшого числа простейших дефектов, если размеры нарушений не превышают нескольких межатомных расстояний. Такие комплексы иногда называют кластерами.
Точечные дефекты, располагаясь в целом хаотически, способны к упорядоченному расположению вдоль определенных кристаллографических направлений. Вследствие этого возникает анизотропия, особенно выраженная, если дефекты создаются примесями, например оптическая анизотропия в кубических кристаллах, в том числе в кристаллах флюорита.
Миграция дефектов по кристаллу, усиливающаяся с повышением температуры, приводит к их дальнейшему объединению и образованию более крупных, макроскопических, областей нарушений, влияющих на первичные свойства кристалла. Структурные дефекты могут быть причиной явлений, не характерных для идеального кристалла флюорита, — окраски, интенсивной люминесценции и др. В то же время, зная природу этих свойств, можно целенаправленно изменять их, вводя в структуру дефекты нужного «сорта». На этом основано, например, использование кристаллов фтористого кальция, легированных Sm2+, Dy2+, Nd3+, Er3+ в лазерной технике, а также в мазерах.
Основными линейными дефектами являются дислокации, образующиеся в результате сдвига атомных слоев друг относительно друга на одно межатомное расстояние. Дислокации могут быть краевыми, представляющими собой край «оборванной» в результате сдвига атомной плоскости, и винтовыми (фото 1, см. вкл.), в которых линия, последовательно соединяющая атомы один за другим, является винтовой. Вблизи дислокации кристалл сильно деформирован, причем если ширина деформированной зоны соответствует размерам точечного дефекта, то длина ее может достигать миллионов межатомных расстояний — дислокация как бы пронизывает кристалл насквозь. Плотность дислокаций, определяемая как число дислокационных линий, пересекающих площадку в 1 см2 в кристалле, может достигать в сильно деформированных кристаллах 1012. В хороших оптических кристаллах фтористого кальция она составляет 104 и менее на 1 см2. Плотностью дислокаций, их распределением и перемещением внутри кристалла определяются механические свойства флюорита.
Объемными дефектами являются блочность, мозаичность, широко проявляющиеся как на природных, так и на искусственных кристаллах флюорита (фото 2, см. вкл.), участки с внутренними напряжениями, скопления включений и т. п.
Дефектность структуры флюорита оказывает большое влияние на его оптические свойства. Примеси редкоземельных элементов, вакансии и другие точечные дефекты приводят к снижению пропускания в УФ-области спектра, появлению полос поглощения в видимом диапазоне и окрашенности кристаллов.