Основы нейропсихологии
Шрифт:
Рис. 29. Высокоспециализированные нейроны зрительных образований
золотой рыбки, реагирующие на различные по направлению движения
точки (по Кросби-Димону)
Исследование нейронов, входящих в состав вторичных зон коры, выявило существенно иную картину. С одной стороны, в этих областях были обнаружены нейроны, специфически реагирующие на более комплексные признаки, например, на наклон и толщину линии, на конфигурацию линий (Хьюбел и Визел, 1965). С другой стороны, во вторичных зонах коры было обнаружено значительное число нейронов, реагирующих на различные по модальности сигналы, а также нейроны, которые не реагируют ни
58
на какие сенсорные стимулы и, по-видимому, имеют совсем
Многообразие функций отдельных нейронов мозговой коры не ограничивается, однако, только что приведенными характеристиками. Юнг (1958, 1961) первым выделил в коре нейроны, которые не реагировали ни на какие сенсорные раздражители, и предположил, что они имеют какие-то иные функции.
Дальнейшие исследования, проведенные Джаспером (1963), Е.Н.Соколовым (1959), О.С.Виноградовой (1968, 1970), показали, что многие из этих нейронов, не реагируя на специальные сенсорные раздражители, активно реагируют на смену раздражителей или изменение каких-нибудь их свойств, снижая свою активность по мере привыкания и снова активизируясь при появлении изменений (рис. 30). Это заставило исследователей предположить, что они осуществляют функцию сличения новых раздражителей со следами от старых. Оказалось, что эти нейроны, получившие название нейроны внимания (attention units), распределены по мозговым образованиям очень неравномерно: если в первичных зонах зрительной коры их относительно мало, то в образованиях лимбической области, гиппокампе, хвостатом ядре, а у человека, по-видимому, и в наиболее сложных корковых формациях лобной области коры нейроны такого типа встречаются несравненно чаще.
Рис. 30. Распределение нейронов различного типа в разных структурах мозга, % (по О.С.Виноградовой):
а —мультимодальные и унимодальные нейроны; б —неспецифические и специфические нейроны; в— угасающие и стабильные нейроны
Все это показывает, что в реализации активных форм психической деятельности, требующих не только получения информации, но и сличения этой информации с предшествующим опытом, принимают участие различные, в том числе далеко отстоящие друг от друга, зоны коры головного мозга и что психические процессы осуществляются сложными системами совместно работающих зон мозговой коры и нижележащих нервных образований.
Значение этого факта для понимания основных принципов функциональной организации мозга как органа психической жизни будет показано далее.
3 ФИЗИОЛОГИЧЕСКИЕ ДАННЫЕ: МЕТОД РАЗРУШЕНИЯ
Мы коротко остановились на двух источниках наших знаний о функциональной организации мозга: сравнительно-анатомических исследованиях и методах раздражения различных участков мозга непосредственным и косвенным путем.
Нам осталось ознакомиться с основными данными, полученными третьим путем, — методом выключения (или разрушения), который заключается в том, что исследователи разрушают определенные области мозга животного и прослеживают изменения в его поведении. Этому методу (или, более точно, наблюдениям над больными, у которых ранение, кровоизлияние или опухоль разрушили определенные участки мозга) суждено было сыграть основную роль в становлении новой науки о функциях мозга — нейропсихологии.
60
Еще на первых этапах физиологического анализа функции мозга было показано, что разрушение различных его участков приводит к далеко не одинаковым результатам.
Так, уже в середине XIX века было твердо установлено, что разрушение той области мозга собаки, которая содержит гигантские пирамидные клетки и, следовательно, соответствует передней центральной извилине человеческого мозга, вызывает паралич противоположных конечностей, в то время как разрушение других участков
мозга (этого же полушария) не приводит к такому эффекту. Аналогичные данные были получены в опытах с высшими млекопитающими — обезьянами. Правда, эти опыты с первых же шагов выявили определенные трудности, источники которых стали понятными лишь значительно позже.Еще в первой половине XIX века Флуранс (1842) показал, что точное ограничение двигательных функций определенными зонами мозговой коры весьма относительно: перешивая накрест нервы, идущие у петуха от определенных зон мозга к крыльям, он не наблюдал никаких изменений в двигательных функциях последних. Через некоторое время Гольц (1876—1881), разрушивший двигательные участки мозговой коры собаки, пришел к выводу, что моторные функции не ограничены у нее строго определенными участками мозга, что нарушенные функции конечностей быстро восстанавливаются после таких операций и что разрушение различных участков мозга приводит скорее к общему снижению активности поведения животного, чем к выпадению специальных, изолированных функций. Представления об отсутствии четкой функциональной организации мозговой коры у животных, существенно противоречащие всем тем фактам, которые мы приводили ранее, длительное время сохранялись в науке. Выдающийся американский исследователь К. С.Лешли (1929) описал факты, которые заставляли думать, что у крысы функции поведения связаны скорее с массой сохранившегося мозга, чем с локализацией разрушенного в опыте мозгового вещества.
Объяснить это противоречие оказалось возможным много позже, когда больше стало известно о тонком строении мозговой коры различных животных и когда были проведены сравнительные исследования, показавшие, к каким различным результатам приводит разрушение одной и той же мозговой ткани у представителей различных этапов развития животного мира.
Как уже говорилось ранее (см. рис. 9), строение мозга животных, относящихся к различным этапам эволюции, отличается различной степенью дифференцированности. Если у ежа, крота или мыши еще трудно выделить четкие, различные по своему строению, поля, сенсорные зоны коры у них еще недостаточно дифференцированы от двигательных зон, а вторичные и третичные поля почти вовсе не выделены, то на высших этапах эволюционной лестницы (например, у приматов) такая дифференцированность полей оказывается достаточно высокой; у человека она достигает высочайших пределов, причем вторичные и третичные поля доминируют во всей массе коры.
61
Уже это может служить объяснением того факта, что разрушение ограниченных зон головного мозга вызывает на различных ступенях эволюционной лестницы неодинаковый эффект и что повреждение отдельных участков мозга вызывает у низших млекопитающих (не говоря уже о низших позвоночных) менее дифференцированные дефекты, чем у высших млекопитающих и приматов (табл. 7).
Таблица 7
Последствия разрушений передних и задних отделов коры у разных представителей животного мира
Представители животного мира
Разрушение передних (двигательных) отделов коры
Разрушение задних (сенсорных) отделов коры
Птица
Продолжает летать; изменений в движениях не заметно
Четко ориентируется; выбирает площадку, на которую садится
Собака
Движения конечностей, противоположных очагу разрушения, нарушаются; паралич противоположных конечностей, который, однако, частично претерпевает обратное развитие
Частично страдают реакции на экстероцептивные стимулы
Обезьяна
Стоите помощью
Значительное нарушение процессов восприятия (частично восстанавливающихся)
Человек
Полный и стойкий паралич конечностей, противоположных очагу разрушения
Дифференцированное и необратимое нарушение отдельных форм чувствительности
Другая причина противоречивости результатов стала ясна из сравнительного анализа эффектов разрушения коры головного мозга. Оказалось, что разрушение коры головного мозга у птиц (у которых кора едва намечена) приводит к относительно незначительным результатам; у мыши подобное разрушение вызывает также небольшие изменения поведения; у собаки объем этих изменений возрастает, и они делаются более стойкими; у обезьяны дифференцированность и стойкость нарушений поведения, возникших в результате разрушения ограниченных участков мозга, становится несравненно более отчетливой; у человека локальные разрушения мозга вызывают стойкие нарушения различных психических процессов.