Основы программирования в Linux
Шрифт:
В 2002 г. команда NGPT объявила, что не хочет разделять сообщество и приостанавливает разработку новых средств для проекта NGPT, но продолжит работу по улучшению поддержки потоков в ОС Linux, присоединив свои усилия к стараниям NPTL. Библиотека NPTL стала новым стандартом для потоков в Linux, выпустив первую основную версию в дистрибутиве Red Hat Linux 9. Вы можете найти интересную основополагающую информацию о NPTL в статье "The Native POSIX Thread Library for Linux" ("Библиотека истинных потоков POSIX для Linux") Ульриха Дреппера (Ulrich Drepper) и Инго Мольнара (Ingo Molnar), которая во время написания книги была доступна в Интернете по адресу http://people.redhat.com/drepper/nptl-design.pdf.
Большая часть
Достоинства и недостатки потоков
В определенных обстоятельствах создание нового потока обладает явно выраженными преимуществами по сравнению с созданием нового процесса. Накладные расходы при создании нового потока существенно меньше, чем при создании нового процесса (несмотря на то, что создание новых процессов в Linux очень эффективно по сравнению с другими операционными системами).
Далее перечислены некоторые достоинства потоков.
Иногда очень полезно создать программу, которая выполняет два дела одновременно. Классический пример — подсчет в режиме реального времени слов в документе в ходе редактирования текста. Один поток может управлять пользовательским вводом и выполнять редактирование. Другой, способный видеть то же содержимое документа, может непрерывно обновлять переменную-счетчик количества слов. Первый поток (или даже третий) может использовать эту переменную для информирования пользователя. Другой пример — многопоточный сервер базы данных, в котором единый наблюдаемый процесс обслуживает множество клиентов, улучшая общую пропускную способность за счет обслуживания одних запросов и одновременной блокировки других, ожидающих готовности диска. Серверу базы данных реализовать эту скрытую многозадачность в разных процессах очень трудно, т.к. требования блокировки и непротиворечивости данных приводят к тесной связи двух этих процессов. С помощью множественных потоков воплотить в жизнь этот алгоритм гораздо легче.
Производительность приложения, в котором смешаны ввод, вычисления и вывод, можно повысить, запустив эти операции как три отдельных потока. Пока поток ввода или вывода ждет подсоединения, один из оставшихся потоков может продолжить вычисления. Серверное приложение, обрабатывающее многочисленные сетевые подключения, также может подойти для организации программы с множественными потоками.
Сейчас, когда многоядерные ЦПУ обычны в настольных и портативных компьютерах, применение множественных потоков внутри процесса может при наличии подходящего приложения позволить одному процессу лучше использовать доступные аппаратные ресурсы.
Вообще переключение между потоками требует от операционной системы гораздо меньше усилий, чем переключение между процессами. Таким образом, множественные потоки гораздо менее требовательны к ресурсам, чем множественные процессы, и с ними гораздо практичнее выполнять в однопроцессорных системах программы, логика которых требует применения нескольких потоков исполнения. Считается, что трудности разработки при написании многопоточной программы весьма значительны, и это утверждение нельзя не принимать всерьез.
У потоков есть и недостатки.
Создание многопоточной программы требует очень тщательной разработки. Вероятность появления незначительных временных сбоев или ошибок, вызванных нечаянным совместным использованием переменных, в такой программе весьма значительна. Алан Кокс (Alan Сох, всеми уважаемый гуру Linux) сказал, что потоки равнозначны умению "выстрелить в обе собственные ноги одновременно".
Отладка многопоточной программы гораздо труднее,
чем отладка одного потока исполнения, поскольку взаимосвязи потоков очень трудно контролировать.Программа, в которой громоздкие вычисления разделены на две части, и эти две части выполняются как отдельные потоки, необязательно будет работать быстрее на машине с одним процессором, если только вычисление не позволяет выполнять обе ее части одновременно и у машины, на которой выполняется программа, нет многоядерного процессора для поддержки истинной многопоточности.
Первая программа с применением потоков
Существует целый ряд библиотечных вызовов, связанных с потоками, большинство имен которых начинается с префикса pthread. Для применения этих библиотечных вызовов вы должны определить макрос
Когда разрабатывались первые версии библиотечных подпрограмм UNIX и POSIX, предполагалось, что в каждом процессе будет только один поток исполнения. Яркий пример — переменная
Вам нужны реентерабельные подпрограммы. Реентерабельный программный код может вызываться несколько раз либо разными потоками, либо каким-то образом вложенными вызовами и при этом работать корректно. Следовательно, реентерабельная часть программного кода обычно должна применять локальные переменные таким образом, чтобы любой и каждый вызов кода получал собственную уникальную копию данных.
В многопоточных программах вы сообщаете компилятору, что вам нужно это средство, определяя в вашей программе макрос
Некоторые функции получают безопасный реентерабельный вариант прототипа или объявления. При этом имя функции остается обычно прежним, но в конце добавляется суффикс
Некоторые функции из файла stdio.h, которые обычно реализованы как макросы, становятся соответствующими реентерабельными безопасными функциями.
Переменная
Включение файла pthread.h предоставляет другие прототипы и определения, которые нужны в вашем программном коде, во многом так же, как делает stdio.h для подпрограмм стандартного ввода и вывода. В заключение следует убедиться в том, что вы включили в программу соответствующий заголовочный файл потоков и скомпоновали программу с подходящей библиотекой потоков, в которой реализованы функции семейства