Чтение онлайн

ЖАНРЫ

Остеопороз

Верткин Аркадий Львович

Шрифт:

Была показана связь терапии варфарином с усилением кальцификации коронарных артерий и клапанов сердца, что согласуется с описанными механизмами.

Фосфаты

Фосфаты являются основным компонентом костной структуры.

Гипофосфатемия приводит к нарушению формирования хрящевой и костной ткани, тогда как гиперфосфатемия стимулирует процесс минерализации в хондроцитах и остеобластах. Гиперфосфатемия является независимым фактором риска ССЗ. Фосфаты непосредственно стимулируют кальцификацию сосудов путем образования соединений с кальцием, а также выступают в роли сигнальной молекулы в процессе дифференцировки остеобластов. Неорганический фосфат вызывает кальцификацию матрикса, тогда как неорганический пирофосфат, который вырабатывается экзонуклеотид-пирофосфатазой (член 1 семейства

фосфодиэстераз; E-NPP1) и переносится белком Ank, является ингибитором кальцификации. Выраженность кальцификации зависит от отношения между концентрациями неорганического фосфата и неорганического пирофосфата. При ХБП повышение сывороточных концентраций фосфатов и ПТГ положительно коррелирует с повышением риска смертности от сердечно-сосудистых причин.

Необходимыми компонентами процесса кальцификации ГМК служат образование фосфата из ss-глицерофосфата и его захват белком Pit-1 (тип III натрийзависимого котранспортера фосфата, экспрессируемый в ГМК человека). Повышенная концентрация фосфатов стимулирует экспрессию маркеров остеохондрогенной дифференцировки, таких как RUNX2 и OPN. В опытах in vitro кратковременное повышение концентрации кальция сопровождалось увеличением чувствительности ГМК сосудов к фосфатам за счет усиления экспрессии мРНК Pit-1. В результате этого ГМК сосудов приобретали фенотипические признаки остеобластов и хондроцитов, такие как экспрессия фактора транскрипции SOX9 и коллагена II типа, который является белком внеклеточного матрикса хрящевой ткани.

Лечение фосфат-связывающими препаратами может тормозить кальцификацию сосудов; в настоящее время изучается потенциальная роль данной гипотезы в клинической практике.

Катепсины

Катепсин K, который относится к цистеиновым протеазам, играет крайне важную роль в функционировании остеокластов и в деградации белковых компонентов костного матрикса, таких как коллаген I и II типа, эластин и остеонектин. Катепсин K вырабатывается макрофагами, резорбирующими костную ткань, и синовиальными фибробластами. Сывороточная концентрация катепсина K возрастает у пациентов с ревматоидным артритом и коррелирует с рентгенологическими признаками деструкции. В настоящее время изучается возможность использования ингибиторов катепсина K, таких как оданакатиб, в лечении остеопороза.

У мышей катепсин L1 непосредственно участвует в атерогенезе, опосредуя разрушение внутренней эластической мембраны гладкомышечными клетками, миграцию и скопление ГМК в очагах поражения интимы, а также миграцию моноцитов и лейкоцитов периферической крови в очаги поражения. Кроме того, дефицит катепсина L1 тормозит развитие индуцированного диетой атеросклероза. Разрушение катепсина K замедляет прогрессирование атеросклероза и вызывает фиброз бляшек, что приводит к увеличению их стабильности.

Остеопонтин

OPN представляет собой внеклеточный структурный белок, который синтезируется в различных тканях; его синтез стимулируется кальцитриолом (1,25(OH)2D3). Этот белок содержит большое количество остатков аспарагиновой кислоты, которые связывают ионы кальция и гидроксиапатита, препятствуя формированию кристаллов. OPN может также действовать посредством связывания с различными интегриновыми рецепторами, особенно с интегрином ss-3; связывание с этим рецептором приводит к снижению концентрации ионов кальция в цитозоле, что сопровождается активацией остеокластов и вызывает экспрессию карбоангидразы II, которая создает кислую среду, необходимую для резорбции очагов эктопической кальцификации. В опытах на мышах с недостаточностью гена, кодирующего OPN, введение рекомбинантного OPN приводило к восстановлению нарушенной резорбции эктопической кости, которая была имплантирована в мышечную ткань.

OPN является ингибитором кальцификации сосудов. У мышей с недостаточностью MGP в сочетании с недостаточностью гена, кодирующего OPN, наблюдалась более интенсивная кальцификация сосудов по сравнению с мышами, имевшими недостаточность только MGP. OPN в больших количествах экспрессируется в кальцинированных атеросклеротических бляшках у пациентов с сахарным диабетом и хронической почечной недостаточностью, что может быть проявлением компенсаторного механизма, снижающего минерализацию. Концентрация OPN и ОПГ в сыворотке

крови повышена у пациентов со стенозом сонных артерий и ИБС и возрастает при увеличении активности заболевания8. OPN непосредственно ингибирует кальцификацию ГМК аорты крупного рогатого скота в клеточной культуре, а также клапанов аорты in vivo.

Паратиреоидный гормон

ПТГ оказывает парадоксальное влияние на процесс ремоделирования костной ткани: хроническое повышение секреции ПТГ приводит к угнетению активности остеобластов и усилению костной резорбции, тогда как периодическое введение ПТГ стимулирует формирование костной ткани89. Эффекты ПТГ обусловлены его связыванием с рецептором PTH1 остеобластов и реализуются посредством различных внутриклеточных сигнальных путей, включая каскады протеинкиназы A (PKA) и митоген-активируемой протеинкиназы (MAPK), а также чувствительных к ПТГ факторов транскрипции, таких как белок, связывающийся с цАМФ-зависимым элементом, AP1 и RUNX2. ПТГ стимулирует выработку MGP в остеобластах посредством сигнальных путей PKA и регулируемых внеклеточным сигналом киназ (ERK)-MAPK; этот эффект опосредован факторами транскрипции семейства Sp и RUNX2.

В сосудах ПТГ активирует каскад PKA, стимулируя кальцификацию независимо от уровня кальция и фосфора. Как первичный, так и вторичный гиперпаратиреоидизм вызывает кальцификацию аортального клапана, которая разрешается одновременно с нормализацией уровня ПТГ. Активация PKA под действием TNF или аналогов циклического АМФ приводит к дифференцировке остеобластов и минерализации сосудистых клеток. Форсколин, который активирует сигнальный путь PKA, воздействуя на аденилатциклазу и выработку цАМФ, вызывает кальцификацию сосудов за счет влияния на белки-переносчики фосфатов и ферменты, приводящие к образованию пирофосфатов. В исследованиях на животных введение форсколина стимулировало экспрессию маркеров дифференцировки остеобластов (OPN, ALP, BSPII и остеокальцин), а также фактора транскрипции RUNX2.

Витамин D

Витамин D участвует в метаболизме кальция, способствуя его всасыванию в кишечнике, тогда как недостаточность витамина D является дополнительным фактором развития остеопороза. Кроме того, в новых исследованиях была показана роль витамина D в патогенезе кальцификации сосудов. В исследованиях на крысах введение высоких доз витамина D приводило к кальцификации сосудов.

В крови экзогенный витамин D переносится с липопротеинами, в отличие от эндогенного витамина D, который, как правило, связывается с белком; таким образом, холестерин ЛПНП может способствовать накоплению экзогенного витамина D в артериальной стенке в высоких концентрациях. Как эндотелиальные клетки, так и ГМК сосудов экспрессируют высокоаффинные рецепторы к биологически активной форме – витамину D3. По-видимому, метаболиты витамина D оказывают разностороннее воздействие на ГМК, включая усиление экспрессии Са-АТФазы, увеличение поступления кальция в клетки, повышение концентрации свободного кальция в цитозоле и изменение тонуса артерий. Существуют доказательства наличия в ГМК сосудов человека ферментной системы 25-гидроксивитамин D3– 1-гидроксилазы, которая может активироваться под влиянием ПТГ и эстрогенов.

Дислипидемия

Дислипидемия является важным фактором риска кальцификации сосудов. У мышей окисленные формы липидов вызывают угнетение дифференцировки остеобластов в тканях сосудов и снижение МПКТ. Окисленный холестерин ЛПНП стимулирует экспрессию M-CSF и TRAP (мощных медиаторов дифференцировки остеокластов) и подавляет терминальную дифференцировку стромальных клеток в остеобласты.

Накопление окисленных липидов в субэндотелиальном пространстве артерий стимулирует кальцификацию сосудов, а во внутрикостных артериях угнетает минерализацию костной ткани.

У женщин в постменопаузе была показана связь повышенной концентрации холестерина ЛПНП и сниженной концентрации холестерина ЛПВП с остеопорозом. По-видимому, статины усиливают минерализацию костной ткани у мышей и у пациентов с остеопорозом, а также снижают риск костных переломов.

Ренин – ангиотензин – альдостероновая система

Хорошо известно, что активация ренин – ангиотензин – альдостероновой системы стимулирует развитие атеросклероза.

Поделиться с друзьями: