От микроорганизмов до мегаполисов. Поиск компромисса между прогрессом и будущим планеты
Шрифт:
В публикациях также раздаются советы о том, как сделать весь экономический рост устойчивым (WCED, 1987; Schmandt and Ward, 2000; Daly and Farley, 2010; Enders and Remig, 2014) и «равным» (то есть соразмерным и справедливым) (Mehrotra and Delamonica, 2007; Lavoie and Stockhammer, 2013). Как уже отмечалось, давно сформулированный закон Мура посвящен исключительно росту вычислительных возможностей, но почему-то совсем нет книг, описывающих исследования роста современных технических и инженерных систем; посвященных, например, долгосрочному анализу мощностей и роста производительности добывающей и энергетической отраслей. И даже с учетом научных статей найдется лишь немного публикаций, относящихся к росту государств, империй и цивилизаций (Taagepera, 1978; 1979; Turchin, 2009; Marchetti and Ausubel, 2012).
Невозможность всестороннего описания роста в природе и обществе не должна быть отговоркой для малого числа исследований способов роста. Я намерен исправить это упущение, изучив множество форм природного, социального и технического роста. Чтобы охватить такой большой спектр вопросов, книга должна быть ограничена как масштабом, так и глубиной исследований. Я сосредоточусь на жизни на Земле и достижениях человеческого общества. В рамках этой задачи мы пройдем путь от бактериальной инвазии и вирусных инфекций через лес и обмен веществ у животных к росту преобразования энергии и мегагородов, а также основам глобальной экономики, исключив самые крупные и мелкие по масштабу явления.
Мы обойдем вниманием рост (инфляционное расширение) вселенной, галактик, сверхновых или звезд. Я уже говорил о медленном темпе терраформирующих процессов, подчиняющемся образованию новой океанической коры, колеблющемся между менее чем 2 см и не более чем 20 см в год. И хотя некоторые кратковременные и пространственно ограниченные стихийные бедствия (извержения вулканов, массовые оползни, цунами, масштабные наводнения) могут вести к быстрым и значительным переносам масс и энергии за короткие периоды времени, постоянная геоморфологическая деятельность (эрозия и ее противоположность, отложение, осадка) происходит медленно или значительно медленнее геотектонических процессов: скорость эрозии в Гималаях может достигать 1 см в год, но процесс смыва Британских островов происходит со скоростью 2–10 см за 1000 лет (Smil, 2008). Мы не будем более подробно рассматривать в этой книге терраформирующий рост.
И поскольку основное внимание в книге посвящено росту организмов, артефактов и комплексных систем, в ней не будет идти речь о росте на внутриклеточном уровне. Невероятная интенсификация исследований в области биологии помогла нам значительно продвинуться в понимании клеточного роста в целом и в частности роста раковых клеток. Мультидисциплинарный характер, растущий охват и ускоряющийся темп этих исследований означают, что о новых открытиях теперь все чаще сообщают в электронных публикациях, а рецензии и обзоры, написанные на эти темы, устаревают практически мгновенно. Однако в последних книгах за авторством Масиейры-Коэльо (Macieira-Coelho, 2005), Гевирца и др. (Gewirtz et al., 2007), Кимуры (Kimura, 2008) и Крайкивски (Kraikivski, 2013) предлагаются обзоры нормального и аномального роста и гибели клеток.
Соответственно, в этой книге не будет фундаментальным образом рассматриваться генетика, эпигенетика и биохимия роста, и я коснусь клеточного роста только при описании траекторий роста одноклеточных организмов и жизни скоплений микроорганизмов, чье присутствие составляет значительные и даже преобладающие доли биомассы в некоторых экосистемах. Аналогично, говоря о растениях, животных и людях, я собираюсь заострить внимание не на биохимической специфике и сложностях роста на внутриклеточном, клеточном уровне и уровне органов – существуют интереснейшие исследования развития мозга (Brazier, 1975; Kretschmann, 1986; Schneider, 2014; Lagercrantz, 2016) или сердца (Rosenthal and Harvey, 2010; Bruneau, 2012), – а на организмах в целом, включая экологический фон и результаты роста, и я также отмечу некоторые ключевые факторы окружающей среды (от питательных микроэлементов до инфекций), часто ограничивающие рост организмов или препятствующие ему.
Физический рост человека будет рассмотрен довольно подробно с акцентом как на индивидуальные (и зависящие от пола) траектории увеличения роста и веса (а также нежелательный рост ожирения), так и на коллективный рост населения. Я представлю исторические взгляды на рост населения, оценю текущие тенденции роста и изучу возможные
будущие глобальные или некоторые национальные траектории. Но я не стану касаться социально-психологического роста (стадий развития, личности, стремлений, самоактуализации) или роста сознания: эти темы подробно рассмотрены в психологической и социологической литературе.Прежде чем перейти к систематическому исследованию роста в природе и обществе, я кратко представлю единицы измерения и варианты траекторий роста. Эти траектории включают беспорядочное движение, в котором трудно выявить общие тенденции (что часто наблюдается на рынке ценных бумаг), простой линейный рост (когда в песочных часах каждую секунду сыплется одинаковое количество песка), временно экспоненциальный рост (обычно демонстрируемый в таких разнообразных феноменах, как организмы на ранней стадии развития, наиболее интенсивные фазы внедрения технических инноваций и создание биржевых пузырей) и прирост, соответствующий разнообразным изолированным (ограниченным) кривым роста (как, например, размеры всех организмов), чью форму можно выразить с помощью математических функций.
Большинство процессов роста – будь то организмы, артефакты или комплексные системы – подчиняются S-образным (сигмоидальным) кривым роста, соответствующим логистической функции (или уравнению Ферхюльста) (Verhulst, 1838, 1845, 1847), предшествовавшей ей (Gompertz, 1825) или одной из их производных, чаще всего сформулированных Берталанффи (von Bertalanffy, 1938; 1957), Ричардсом (Richards, 1959), Блумбергом (Blumberg, 1968) и Тернером и др. (Turner et al., 1976). Но естественная изменчивость, а также неожиданные вмешательства часто ведут к значительным отклонениям от прогнозируемого курса. Вот почему начинающим исследователям роста лучше начинать с более или менее полного набора данных и смотреть, какая из доступных функций роста наиболее точно описывает ее.
Если двигаться в обратном направлении – взять несколько первых точек на разворачивающейся траектории роста и использовать их для построения кривой стабильного роста, соответствующей конкретной выбранной функции роста, – то вероятность успеха велика, только если пытаться прогнозировать рост, который, скорее всего, будет происходить по известной, многократно продемонстрированной модели, например многими видами хвойных деревьев или пресноводной рыбы. Но выбор случайной S-образной кривой в качестве прогностического фактора роста для организма, не принадлежащего к хорошо изученным группам, выглядит сомнительным, поскольку конкретная функция может оказаться не слишком точным (чувствительным) прогностическим инструментом для феноменов, рассматриваемых только на ранней стадии роста.
Текст развивается в естественной, эволюционной последовательности, от природы к обществу, от простых, непосредственно наблюдаемых свойств роста (числа размножающихся клеток, диаметра деревьев, массы тел животных, развития человеческой фигуры) до более сложных единиц измерения, отмечающих развитие и прогресс общества и экономики (динамики населения, разрушительных сил, создания благосостояния). Но последовательность не может быть исключительно линейной, поскольку существует множество взаимосвязей, взаимозависимостей и обратные связи и эти реалии требуют возвращаться и искать обходные пути, повторяться, чтобы подчеркнуть связи, заметные с других (энергетической, демографической, экономической) точек зрения.
Я начну систематическое рассмотрение роста с организмов, которые в зрелом возрасте имеют размер от микробов (крошечные, если брать отдельные клетки, массивные, если рассматривать их совокупное присутствие в биосфере) до величественных хвойных деревьев и огромных китов. Я подробнее остановлюсь на росте некоторых болезнетворных бактерий, выращивании основных сельскохозяйственных культур и росте человека с детского до взрослого возраста. Затем мы исследуем рост в области преобразования энергии и рукотворных объектов, позволяющих производить продукты питания и заниматься всей прочей экономической деятельностью. Я также рассмотрю, как этот рост изменил многочисленные показатели, эффективность и надежность, так как эти достижения лежат в основе создания нашей цивилизации.