Чтение онлайн

ЖАНРЫ

Открытие Вселенной - прошлое, настоящее, будущее
Шрифт:

Действительно, посылка экипажей в межзвездное пространство без предварительной разведки - слишком рискованное предприятие. Не имея уверенности в существовании высокоразвитых форм жизни вблизи конкретной звезды, не лучше ли направить в ее окрестность автоматический зонд? Его перемещение на дальние расстояния допускает условия, в которых никогда не стал бы путешествовать человеческий коллектив. Например, можно допустить перегрузки в 100 g или 1000 g и значительно сэкономить время (при а0 ~ 1000 g корабль примерно за 8 часов выйдет в субсветовой режим, так что при полете на 10 пс за 32,5 года, истекших на планете-отправителе, на аппарате пройдет всего 35 часов).

Корабль-матка мог бы последовательно приближаться

к дальним окрестностям намеченных звезд, запуская зонды на околозвездные орбиты в планетарных зонах*. До поры до времени зонды вели бы себя как пассивные наблюдатели, следя за развитием ситуации на планетах. Естественно думать, что одним из первых проявлений технологической цивилизации стало бы заметное увеличение радиосветимости ее планеты. Зонд-наблюдатель, настроенный, например, на радиоокно Земли, отметил бы работу уже первых коротковолновых станций и, возможно, отреагировал бы на нее.

* Допуская существование чего-то в духе фотонных космолетов, мы легко убедимся, что они могут использоваться лишь в роли внешнего транспорта, "паркуясь" не ближе 1 светового года от звезд. Причины здесь те же, по которым поезда дальнего следования не развозят пассажиров по квартирам, а сверхзвуковые лайнеры не садятся в палисадниках.

Самое любопытное, что в земных условиях действительно наблюдалось нечто подобное. В первых же каналах коротковолновой связи отмечалось появление четкого запаздывающего эха - словно кто-то через небольшой промежуток времени дублирует исходный сигнал. Разумеется, таким дублером не обязательно должен быть межзвездный зонд, гораздо правдоподобней, что какие-то атмосферные явления обеспечивают задержку и репродукцию сигнала. Но естественное объяснение пока во многом неудовлетворительно, и гипотеза внеземного зонда получила заметное развитие. По данным о радиоэхе подсчитано даже, что аппарат пришел в Солнечную систему примерно 13 тысяч лет назад от звезды е Волопаса...

К сожалению, достоверность таких выводов крайне невелика, и соответствующее атмосферное явление скорее всего вытеснит этот вариант мифа о пришельцах.

Гипотеза Брейсвелла была и остается интереснейшей идеей, но она относится скорее к тонким вопросам технической политики внеземных цивилизаций*. Энергетическая проблема транспортного Контакта ею никак не решается и не обходится. Специалисты по космонавтике и смежным областям за последние десятилетия немало спорили о роли тех или иных путей в исследовании околоземного пространства, Луны и планет: что эффективней людские экипажи или автоматика. Но все споры остались бы академическими упражнениями, не реши они предварительно транспортно-энергетическую проблему...

* Ее следует рассматривать в плане общей программы засева обширных участков космического пространства биокибернетическими системами, играющими роль своеобразных внешних органов чувств и информационных накопителей для чрезвычайно развитой ВЦ. Нечто в этом роде уже осуществляется землянами, создавшими планетарную систему спутников и направляющими свои станции к другим планетам. Не ясно, однако, в какой степени продолжима эта политика, скажем, в галактических масштабах.

Но пора ответить на вопрос - не закрывает ли все сказанное выше наших надежд на Контакт? Слишком уж много принципиальных трудностей скопилось при его обсуждении - так есть ли смысл его продолжать?

ПОИСК НАДЕЖДЫ

Рассмотренные методы Контакта приводят к очевидному заключению цивилизация, желающая надежно оповестить о себе Галактику или хотя бы достаточно большой ее участок, должна уметь зажигать звезды или, по крайней мере, регулировать процессы в звездных масштабах. Вывод практически не зависит от того, прибегла ли она к транспортной или сигнальной связи любой способ передачи физической информации вроде бы сразу выходит на звездные

параметры энергетики и технологии. Не зависит вывод и от более мелких деталей технических достижений, он основан на общих законах распространения и регистрации потоков энергии.

Прийти к такому результату можно было и крайне простым путем, отталкиваясь от того, что при желании создать искусственный объект, который, скажем, в масштабе Галактики регистрируется не хуже обычных звезд, мы, естественно, должны построить настоящую звезду. Если в процессе строительства не нарушаются законы физики, то параметры объекта можно без особой погрешности заимствовать из астрофизических справочников*.

* Массу, светимость, время пребывания в протозвездной фазе (длительность строительства), время жизни в звездном режиме (из ограничений на резерв горючего) и т. п.

В отношении всенаправленных маяков это вполне очевидно. Но и с фотонными кораблями ситуация очень похожа, особенно когда речь идет об очень далеких бросках. Посмотрим на них предельно просто. С физической точки зрения, необходимо передать энергию порядка Мкс2 на сверхдальнее расстояние с обязательным условием, чтобы ее концентрация не падала ниже определенного уровня, диктуемого конструкцией полезного объема. Время выхода в субрелятивистский режим (t0 = с/а0) определяет эффективное время жизни "звезды", выжигающей основную часть стартовой энергии (М0с2) как раз за t0. Отсюда и ее стартовая светимость:

L ( M0c2/t0 ~ (Мкс2/t0r02)r2.

Сопоставляя ее с общей формулой для светимости направленного маяка (f - регистрируемый поток энергии)

L = (f?)r2,

видим, что ракета как бы играет роль сильно сфокусированного светового луча: ? ~ r(/r, где r( - ее поперечник. А направлен этот луч, разумеется, с условием, чтобы в конце разгона регистрировался энергетический поток ~ M0c2/r(2t0, то есть ракета массы М0 "распределилась" по площади ~ r(2 за время t0. Резкое различие с лазером, обслуживающим, например, центр Галактики и требующим в 1025 меньшей мощности, обусловлено тем, что хотя "фокусировка" ракеты сильней (? ~ 10-35 против 10-14 у лазера), но от нее регистрируется чудовищный поток порядка 1028 Вт/м2, тогда как для лазера f ~10-18 Вт/м2*.

* Для оценок уровня "фокусировки ракетного луча" и эквивалентного потока энергии поперечник ракеты выбран r( = 1 км. Под энергетическим потоком, регистрируемым в случае ракеты, понимается, конечно, эквивалент той массы, которую она доставляет в определенную точку пространства в соответствии с целью полета.

Неужели надежная межзвездная связь отгорожена от нас непроходимым энергетическим барьером?

Хотелось бы верить, что дело совсем в ином, скорее всего, в какой-то неосознанной спешке заглянуть в жизнь цивилизаций II или III типа, не став еще цивилизацией класса С.

Иной взгляд на проблему средств Контакта должен развиться задолго до овладения звездной энергетикой, и обход трудностей возможен скорее на социально-экологическом, чем на собственно энергетическом пути. Это очень вероятно, поскольку, как уже говорилось, главные трудности транспортного и сигнального вариантов носят социально-экологический характер. Они наследство древней и не слишком древней гигантомании, всевозможных "неисчерпаемостей" и "покорений природы".

Пожалуй, первое, что приходит на ум, когда вспоминаешь о древних цивилизациях,- это египетские пирамиды. Великолепно правильные сооружения кажутся бесспорным образцом деятельности разумного социального организма. Но что бы подумали о них древнейшие североафриканские охотники, обитавшие там за 8-10 тысячелетий до возникновения Древнего царства? По каким признакам могли бы отличить строения от забавных естественных горок, если, скажем, не нашли бы хода к фараоновым гробницам?

Поделиться с друзьями: