Открытие Вселенной - прошлое, настоящее, будущее
Шрифт:
Так рождалась современная астрофизика.
Спектры сыграли выдающуюся роль и в определении геометрических параметров Вселенной в самых больших масштабах. Определение расстояний до звезд и их скоростей, несмотря на всевозрастающую мощность телескопов, оставалось довольно серьезной проблемой. Старые геометрические методы, блестяще оправдавшие себя при измерениях Солнечной системы, оказались беспомощными при обращении к очень далеким объектам. Даже самыми современными средствами невозможно обнаружить параллакс звезды, удаленной более чем на 100 световых лет, а, следовательно, нет прямого геометрического способа измерить расстояние и скорость.
Выход был найден в связи с работами австрийского физика и астронома Кристиана Допплера (1803–1853). В 1842 году он установил, что частота волнового процесса должна зависеть от скорости и направления движения
Этот эффект, довольно легко наблюдаемый в акустике, трудно уловить в оптике, если скорость источника существенно меньше скорости света. Но именно так обстоит дело со звездами.
Лишь в 1868 году оптический допплер-эффект был обнаружен английским астрономом Уильямом Хэггинсом (1824–1910), изучавшим спектр Сириуса в своей частной обсерватории. Спектральные линии стали для Хэггинса своеобразными метками — именно их небольшое смещение позволило оценить скорость Сириуса [78] . Впоследствии для самых далеких объектов удалось связать между собой задачи определения скоростей и расстояний до них, и допплер-эффект стал надежным космологическим методом.
78
Хэггинсу принадлежит заслуга в первичной спектральной классификации туманностей. Некоторые из них давали очень скудный спектр, т. е. были чисто газовыми образованиями. Туманность Андромеды имела спектр, в общем-то, близкий к звездному, и Хэггинс понял, что имеет дело с гигантским скоплением звезд.
Стоит добавить, что пионерские работы по астроспектроскопии (Кирхгоф, Бунзен, Хэггинс и другие) проводились без применения фотографии. Дело такого рода в смысле объема и качества полученного материала — истинный подвиг.
В истории внедрения спектрального анализа в астрономические исследования ясно чувствуется глубочайшая взаимосвязь в развитии различных областей познания. В сущности, излагая эволюцию астрофизических концепций, следовало бы параллельно давать картину развития наших представлений о веществе вдоль тех же исторических и философских вех… Скажем, возрождение атомизма связано с философией французского математика и теолога Пьера Гассенди (1592–1655), отделившего пространство и время от Бога и указавшего на внутренне присущие атомам свойства взаимодействия. Его концепции оказали огромное влияние на Ньютона и многих других английских физиков и философов. Это видно и в идее планет как центров тяготения, и в идее корпускул света. Наконец, это предопределило ньютоновскую модель абсолютного пространства-вместилища, а впоследствии и необходимость преодоления этой модели.
На протяжении нескольких столетий на небо обрушились все лучшие достижения физики, полученные в земных лабораториях. Этот процесс привел к совершенно новому взгляду на Вселенную, подготовил почву для резкого взлета в ее постижении, произошедшего уже в нашем веке. Этот прогресс воистину поразителен, если сопоставить видение Космоса как главным образом духовной категории, скажем, в «Божественной комедии» у Данте с сугубо материалистическим его восприятием на рубеже 19–20 веков, когда едва ли не все принципиальные проблемы представлялись решенными или, во всяком случае, не слишком сложными.
Открытие звезд
В период становления научной астрономии звездам не очень повезло. С 15 и до середины 19 столетия главное внимание уделялось планетам Солнечной системы. В мире звезд велась в основном предварительная регистрационная работа.
Росла мощность телескопов, и вместе с этим лавинообразно нарастало количество вновь открываемых звезд. Это и неудивительно — невооруженным глазом можно видеть звезды до 6-й величины включительно, а их на всем небе около 4800. Зато в интервале до 10-звездной величины их уже 350 тысяч, а до 20-й величины — миллиард. Так что астрономия столкнулась со своеобразным информационным взрывом.
Однако коллекция в миллион бабочек еще не творит биологии.
Звезд было много, но об их природе к середине 19-го века высказывались лишь очень смутные догадки. Астрономы не слишком ясно представляли
себе даже расстояния, на которых расположены эти звезды… Разумеется, после работы Галлея никто не считал, что они принадлежат какой-то неподвижной хрустальной сфере, но и сколь-нибудь ясной картины, напоминающей великолепное полотно Солнечной системы образца Ньютона — Лапласа, не существовало.Все сдвинулось с места, когда исследователи научились уверенно выделять какие-то особые типы звезд, и по этим особенностям, как по ступенькам, карабкаться к пониманию основных звездных характеристик расстояний, размеров, масс, светимостей, цвета, возраста, строения.
Исходный прорыв наметился как раз в связи с древней проблемой расстояний. Если в античные времена (и вплоть до Коперника) считалось более или менее очевидным, что звезды всех 6 величин находятся на одинаковом расстоянии от Земли, то последовавший разгром хрустальной сферы привел к противоположному крену — долгое время общественное мнение склонялось к тому, что истинная яркость звезд того же порядка, что и у Солнца, а наблюдаемая яркость целиком зависит от их удаленности. Эта вполне научная гипотеза приводила, в конечном счете, ко многим ошибочным выводам — ведь светимость большинства ярких звезд на самом деле значительно превышает светимость Солнца. Поэтому лишь решение проблемы расстояний открывало дорогу к физической классификации звезд.
Необходимы были прямые и очень точные измерения звездных параллаксов. Они стали активно проводиться уже на рубеже 18–19 веков, но долгое время из-за больших ошибок параллаксы сильно завышались, и расстояния до звезд оказывались неправдоподобно малыми.
Достаточно точные результаты появились почти одновременно и совершенно независимо при изучении трех ярких звезд.
Первый результат, по-видимому, получил директор Дерптской обсерватории Василий Яковлевич Струве [79] (1793–1864), определивший параллакс Веги ( Лиры) в 1837 году. Это была прецизионная работа — параллакс оказался немногим больше десятой доли угловой секунды (современное значение 0,123).
79
В. Я. Струве, впоследствии организатор и с 1840 г. директор Пулковской обсерватории, академик Петербургской АН, стал родоначальником блестящей «звездной династии». Его сын Отто Васильевич (1819–1905), сменивший отца на посту в Пулково в 1862 г., и внук Людвиг Оттович (1858–1920), директор Харьковской обсерватории, внесли огромный вклад в изучение двойных звезд и во многие другие области астрономии. Правнук Отто Людвигович (1897–1963) стал одним из создателей современной радиоастрономии. Он возглавлял знаменитую американскую обсерваторию Грин-Бэнк, был президентом Международного астрономического союза. Именно Отто Струве сформулировал концепцию звездной эволюции.
Заметно большие параллаксы были получены в 1838 году немецким астрономом Фридрихом Вильгельмом Бесселем (1784–1846) для 61 Лебедя и английским астрономом Томасом Гендерсоном (1798–1844), наблюдавшим в Южной Африке? Центавра [80] .
Вега и Центавра — четвертая и пятая среди самых ярких звезд, а 61 Лебедя — очень быстрая звезда, чье собственное движение можно зарегистрировать невооруженным глазом (5,22 в год) [81] . Это и давало предварительные основания числить данные звезды среди ближайших к Солнцу.
80
Современные значения параллаксов 61 Лебедя 0,292, Центавра 0,751.
81
Самая быстрая из известных сейчас звезд — звезда Барнарда, обнаруженная в 1916 году американским астрономом Эдвардом Эмерсоном Барнардом (1857–1923), известным исследователем планет и слабых звезд. Она обладает собственным движением 10,3 в год, а ее светимость в 70 раз ниже солнечной.
Бессель первым сообщил о своем открытии, но, как и Гендерсон, опубликовал его в 1839 году, а Струве — даже в 1840 г.
Из этих измерений впервые возникла надежная абсолютная шкала межзвездных расстояний. Оказалось, что ближайшая из звезд находится на расстоянии, которое свет преодолевает за 4,28 года (это так называемая Проксима Центавра с параллаксом 0,762, относящаяся к тройной системе Центавра).
Зная расстояния, можно было вводить абсолютные звездные величины, определяемые как блеск звезды, отнесенной от наблюдателя ровно на 10 парсеков: