Чтение онлайн

ЖАНРЫ

Открытия и изобретения, о которых должен знать современный человек
Шрифт:

Лазер легко генерирует вспышки, длящиеся несколько пикосекунд, т. е. несколько миллиардных долей секунды! Такие вспышки позволяют исследовать быстро протекающие процессы во время химических и биохимических реакций. Данное направление исследований получило название пикосекундной оптики. Оно оказалось весьма перспективным при изучении химизма живой материи, реакций в тканях и клетках растений, животных и микроорганизмов.

Открытие с помощью квантовых генераторов молекулярных механизмов фотосинтеза и прочие ошеломляющие открытия способствовали появлению фотобиологии — науки, находящейся на стыке когерентной оптики, пикосекундной оптики и биологии. Посредством лазеров сегодня выполняются экспериментальные операции на вирусах и микробах, вызываются химические реакции белков и ферментов,

ускоряются процессы в клетках, удаляются хромосомы и отдельные гены.

Многие фирмы и промышленные предприятия во всем мире сегодня пользуются лазерной сигнализацией. Каждому прекрасно известны подобные системы безопасности, устанавливаемые в крупных музеях. Принципиальная схема лазерной сигнализации предельно проста. Охранная система сконструирована с учетом того, что световой луч совершенно невидим. Дело в том, что свет — источник и первопричина нашего зрения — абсолютно невидим до тех пор, пока не попадет к нам в глаз, орган зрения. Если луч не направлен прямо в глаз человеку, то увидеть такой луч совершенно невозможно.

Что касается солнечных лучей в комнате, то они видны благодаря тем самым пылинкам, которые движутся в теплом потоке света. Пыли в воздухе всегда так много, что она отражает световые лучи и не дает им двигаться прямолинейно. Основной поток солнечного света проходит сквозь пространство комнаты по прямой. Однако на всем протяжении пучка лучей от него исходят отраженные витающей в воздухе пылью лучики, идущие на глазное дно наблюдателя.

Лазерный луч малой мощности настолько тонок, что он задевает крайне мало пылинок и не вызывает их свечения. Поэтому когерентный луч незаметен человеку. Квантовый генератор направляет излучение на фотоэлемент, установленный на участке электрической цепи сигнализации. Энергия фотонов преобразуется в электрическую, и цепь замыкается: через фотоэлемент течет ток. Если что-то или кто-то (грабитель) пересекает луч, то фотоэлемент перестает работать и участок цепи разрывается. Ток поступает на динамик сигнализации. Увидеть лазерный луч позволяют аэрозольные частицы, размеры которых в 1000 раз меньше размеров пылинок.

Пользователям персональных ЭВМ известны и другие примеры широкого применения лазерных технологий в повседневной жизни. Успех компакт-дисков в промышленности аудиотехники привел к тому, что сегодня СБ прослушиваются зачастую на компьютерах. Более того, в последнее время СБ еще и просматриваются, поскольку способны хранить на себе фотографические и рисованные изображения. Компакт-диски для хранения и просмотра фотографий появились в 1992 г.

С 1997 г. появились диски БУБ, обладающие емкостью, в 7 раз превосходящей емкость обыкновенных СБ! Это позволило записывать на БУБ видеофильмы и большие игры. Чтение таких дисков осуществляется посредством лазера, встроенного в компьютер. Это маломощный лазерный светодиод, который дает луч с большой конусностью и длиной волны 760 нм. Фокусировка луча осуществляется посредством системы малых линз.

Луч поступает на поверхность диска, отражается от нанесенных на нее бороздок, подобных таковым на грампластинке, и поступает на матрицу из фотоэлементов, где оптическая информация превращается в электрический сигнал, который идет на специальную большую интегральную схему. Остается заметить, что устройства СБ-ШЭМ современного типа появились около 10 лет назад.

Наконец, следует напомнить о лазерных принтерах, которые во многом превосходят все остальные типы печатных устройств. Качество печати современных лазерных принтеров приближается к фотографическому, кроме того, эти устройства издают мало шума при работе. Лазерный луч в данных устройствах принимает участие в создании матрицы изображения. Лазер меняет точечные заряды на поверхности барабана, который с их помощью притягивает к себе частицы краски, а потом переносит их на бумагу. Взаимное расположение точечных зарядов разной величины складывает картинку, которую воссоздает прилипающая к барабану краска.

За последние три года наметилась тенденция снижения цен на этот некогда очень дорогой товар, что делает лазерный принтер доступным

для каждого пользователя персонального компьютера. В полиграфии применяется аналог лазерного принтера — фотонаборный аппарат. Это устройство, обладающее несравнимо более высоким качеством печати, создает изображение, воздействуя лазерным лучом на фотопластинку или фотобумагу.

Загадки зрения

Хотя оптика, о чем рассказывалось выше, давно перестала изучать исключительно зрение, одно из направлений этой науки — физиологическая оптика — по-прежнему занимается физическими аспектами световосприятия. Глаз, учитывая сложность его устройства, допустимо рассматривать в качестве миниатюрной оптической системы. Хрусталик глаза преломляет световые лучи, фокусируя их на сетчатку. Он обладает оптической силой. Зрачок глаза меняет величину в зависимости от освещенности, являющейся физической характеристикой светового потока и выражаемой в люксах.

Открытие дисперсии света

Первооткрывателем явления дисперсии света является Ньютон, а под самой дисперсией понимается разложение сложного света на простые составляющие, т. е. на спектр. Об экспериментах великого физика, в которых он посредством призмы доказывал «элементарность» монохромных (одноцветных) лучей и многокомпонентность белого света, уже говорилось в этой книге. Нужно заметить, что Ньютон не первым открыл разложение света, ученые давно обратили на это явление внимание, наблюдая за радугой, преломлением света в хрустале и т. д. Но только ему удалось объяснить сущность физического явления.

Современное объяснение дисперсии основывается на представлениях о двойственной, корпускулярно-волновой природе видимого излучения. Дисперсией называется зависимость скорости света в веществе от длины волны. Проходя через прозрачное или полупрозрачное вещество (газ, жидкость, стекло, пленку), одноцветный луч испытывает преломление, потому что его скорость в новой среде меняется. Причем чем больше сократится скорость, тем сильнее преломится луч. Красные лучи почти не преломляются, зато фиолетовые отклоняются очень существенно.

Белый свет является комплексным излучением, он образован смешением всех спектральных цветов. Монохромные лучи в составе белого света замедляются веществом (призмой) неодинаково, что приводит к разложению светового потока. Красный луч почти не испытывает преломления, зато остальные лучи отклоняются от него все дальше и дальше. Больше всего отклоняется от красного фиолетовый луч. Поскольку после неодинакового преломления лучи уже не могут смешаться и воссоздать белый цвет, то они приобретают вид радуги-спектра.

Мало кто знает, сколько же действительно цветов увидел Ньютон во время своего эксперимента. Согласно иллюстрациям к работам великого физика, он наблюдал ровно семь цветов спектра: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Парадоксально, однако знаменитый англичанин не видел семи цветов. Он их просто выдумал. Если рассуждать строго научно, то спектр разделим лишь на три области — красную, желто-зеленую и сине-фиолетовую. Человек в состоянии различить в радужной полоске пять чистых цветов — красный, желтый, зеленый, голубой и фиолетовый. Если говорить о промежуточных (переходных) оттенках, то их существует 4: оранжевый, желто-зеленый, зелено-голубой и синий. Таким образом, Ньютон мог выделить в линии спектра либо 3 главных области, либо 5 основных, чистых цветов, либо 9 цветовых оттенков вообще — 5 основных цветов и 4 переходных.

Ответ на этот вопрос содержится в исторической работе Ньютона под названием «Оптика», где ученый признается, что увидел 5 чистых цветов. Он рассказывает о своих наблюдениях следующее: «Спектр оказался окрашенным и притом так, что часть наименее преломленная была красною; верхняя же, наиболее преломленная часть у конца была окрашена в фиолетовый цвет. Пространство между этими крайними цветами имело желтую, зеленую и голубую окраску». Физик ввел в науку представление о несуществующих семи цветах спектра, неосознанно подчинись вере в магию числа 7.

Поделиться с друзьями: