Чтение онлайн

ЖАНРЫ

Параллельное и распределенное программирование на С++
Шрифт:

Как упростить взаимодействие между MPI-задачами

Помимо упрощения и сокращения размеров кода МРТзадачи с помощью полиморфизма и шаблонов, мы можем также упростить взаимодействие между MPI-задачами, воспользовавшись преимуществами перегрузки операторов. Функции MPI_Send и MPI_Recv имеют следующий формат:

MPI_Send(Buffer, Count, MPI_LONG, TaskRank, Tag, Comm);

MPI_Recv(Buffer,Count,MPI_INT, TaskRank, Tag, Comm, &Status);

При

вызове этих функций необходимо, чтобы пользователь указал тип применяемых здесь данных и буфер, предназначенный для хранения посылаемых или принимаемых данных. Спецификация типа посылаемых или принимаемых данных может иметь довольно громоздкий вид и чревата последующими ошибками при передаче неверного типа. В табл. 9.3 приведены прототипы MPI-функций отправки и приема данных и их краткое описание.

Таблица 9.3 Прототипы MPI-функций отправки и приема данных

Функции Описание

#include «mpi.h»

int MPI_Send (void *Buffer,int Count, MPI_Datatype Туре, int Destination, int MessageTag, MPI_Comm Comm) ; Выполняет базовую отправку данных

int MPI_Send_init (void *Buffer,int Count, MPI_Datatype Type, int Destination, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Инициализирует дескриптор для стандартной отправки данных

int MPI_Ssend (void *Buffer,int Count, MPI_Datatype Type, int Destination, int MessageTag, MPI_Comm Comm); Выполняет базовую отправку данных с синхронизацией

int MPI_Ssend_init (void *Buffer,int Count, MPI_Datatype Type, int Destination, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Инициализирует дескриптор для стандартной отправки данных с синхронизацией

int MPI_Rsend (void *Buffer,int Count, MPI_Datatype Type, int Destination, int MessageTag, MPI_Comm Comm) ; Выполняет базовую отправкуданных с сигналом готовности

int MPI_Rsend_init (void *Buffer,int Count, MPI_Datatype Type, int Destination, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Инициализирует дескриптор для стандартной отправки данных с сигналом готовности

int MPI_Isend (void *Buffer,int Count, MPI_Datatype Type, int Destination, int MessageTag, MPI_Comm Comm, MPI_Request *Request ); Запускает отправку без блокировки

int MPI_Issend (void *Buffer,int Count, MPI_Datatype Туре, int Destination, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Запускает синхронную отправку без блокировки

int MPI_Irsend (void *Buffer,int Count, MPI_Datatype Туре, int Destination, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Запускает неблокирующую отправкуданных с сигналом готовности

int MPI_Recv (void *Buffer,int Count, MPI__Datatype Type, int source, int MessageTag, MPI_Comm Comm, MPI_Status *Status); Выполняет базовый прием данных

int MPI_Recv_init (void *Buffer,int Count, MPI_Datatype Type, int source, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Инициализирует дескриптор для приема данных

int MPI_Irecv (void *Buffer,int Count, MPI_Datatype Type, int source, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Запускает прием данных без блокировки

int MPI_Sendrecv (void *sendBuffer, int SendCount, MPI_Datatype SendType, int Destination, int SendTag, void *recvBuffer, int RecvCount, MPI_Datatype RecvYype, int Source, int RecvTag, MPI_Comm Comm, MPI_Status *Status);

Отправляет и принимает сообщение

int MPI_Sendrecv_replace (void *Buffer,int Count, MPI_Datatype Туре, int Destination, int SendTag,int Source,int RecvTag, MPI_Comm Comm, MPI_Status *Status); Отправляет и принимает сообщение с использованием единого буфера

Наша цель — обеспечить отправку и получение MPI-данных с помо щ ью потоково г о представления iostream-классов. Данные удобно отправлять, используя следую щ ий синтаксис.

//...

int X; float Y;

user_defined_type Z;

cout « X << Y « Z;

//...

Здесь разработчик не должен указывать типы данных при вставке их в объект cout. Для вывода этих данных трех типов достаточно определить оператор "<<". Анало г ично можно поступить при выделении данных из потоково г о объекта cin.

//...

int X; float Y;

user_defined_type Z;

cin >> X >> Y >> Z;

//...

В инструкции ввода данных их типы не задаются. Перегрузка операторов позволяет разработчику использовать этот метод для MPI-задач. Поток cout реализуется из класса ostream, а поток cin — из класса istream. В этих классах определены операторы "<<" и ">>" для встроенных С++-типов данных. Например, класс ostream содержит ряд перегруженных операторных функций "<<".

//.. .

ostream& operator<<(char с);

ostream& operator<<(unsigned char с);

ostream& operator<<(signed char с);

ostream& operator<<(const char *s);

ostream& operator<<(const unsigned char *s);

ostream& operator<<(const signed char *s);

ostream& operator<<(const void *p);

ostream& operator<<(int n);

ostream& operator<<(unsigned int n);

ostream& operator<<(long n);

ostream& operator<<(unsigned long n);

//.. .

С помощью этих определений пользователь классов ostream и istream применяет объекты cout и cin, не указывал типы передаваемых данных. Этот метод перегрузки можно использовать для упрощения МРI- взаимодействия. Мы рассмотрели идею PVM-потока в главе 6. Здесь мы применяем тот же подход к созданию MPI-потока, используя структуру классов istream и ostream в качестве руководства для разработки класса mpi_stream. Потоковые классы состоят из компонентов состояния, буфера и преобразования. Компонент состояния представлен классом ios; компонент буфера — классами streambuf, stringbuf или filebuf. Компонент преобразования обслуживается классами istream, ostream, istringstream, ostringstream, ifstream и ofstream. Компонент состояния отвечает за инкапсуляцию состояния потока. Класс ios включает формат потока, информацию о состоянии (работоспособное или состояние отказа), факт достижения конца файла (eof). Компонент буфера используется для хранения считываемых или записываемых данных. Классы преобразования предназначены для перевода данных встроенных типов в потоки байтов и обратно. UML-диаграмма семейства классов iostream показана на рис. 9.3.

Поделиться с друзьями: