Параллельные миры
Шрифт:
Больше чем через 40 лет, в 1979 году, Деннис Уолш из обсерватории Джодрелл-Бэнк получил первое частичное доказательство лин-зирования: он открыл двойной квазар Q0957+561. В 1988 году кольцо Эйнштейна впервые наблюдалось из источника радиоизлучения MG1131+0456. В 1997 году Космический телескоп Хаббла и сеть радиотелескопов MERLIN в Великобритании при изучении далекой галактики 1938+666 уловили первое кольцо Эйнштейна совершенно правильной формы, что в очередной раз подтвердило теорию великого ученого. (Это кольцо совсем крошечное, всего лишь в одну угловую секунду, то есть размером с маленькую монетку, наблюдаемую с расстояния в три километра.) Астрономы так описывают восторг, охвативший их при виде этого исторического события: «Сначала кольцо выглядело довольно искусственно и мы подумали, что это какой-то дефект изображения, но потом мы поняли, что перед нами кольцо Эйнштейна совершенно
Даже такие невидимые формы вещества, как темное вещество, можно наблюдать при помощи создаваемого ими преломления света. Таким способом можно получить «карты», на которых показано распределение темного вещества во вселенной. Поскольку гравитационное линзирование Эйнштейна преломляет свет больших галактических скоплений скорее в дуги (нежели в кольца), представляется зможным оценить концентрацию темного вещества в этих скоплениях. В 1986 году астрономы Национальной оптической астрономической обсерватории Стэнфордского университета и Обсерватории Пик-дю-Миди во Франции наблюдали первые гигантские галактические дуги. С тех пор было обнаружено около сотни галактических дуг, наиболее впечатляющей из которых является Абель 2218.
Линзы Эйнштейна можно также использовать в качестве объеквного метода измерения количества массивных компактных объектов гало (МАСНО) во вселенной (которые состоят из обычного щества, такого, как мертвые звезды, коричневые карлики и пылевые блака). В 1986 году Богдан Пачински из Принстона понял, что в кучае, если массивные компактные объекты гало проходят перед здой, они тем самым увеличивают ее яркость и создают второе ее ображение.
В начале 1990-х годов несколько групп ученых (в частности, французкая группа EROS, американо-австралийская группа МАСНО и польско-американская группа OGLE) воспользовались этим методом для изучения центра Галактики Млечный Путь и обнаружили более пятисот микролинзовых событий (этот результат превзошел ожидания, поскольку некоторое количество этого вещества состояло из звезд с малой массой и неистинных массивных компактных объектов гало). Этот же метод может применяться для обнаружения экстрасолнечных планет, вращающихся вокруг других звезд. Поскольку планета оказывала бы очень малое, но измеримое гравитационное воздействие на свет материнской звезды, линзирование Эйнштейна принципе могло бы их обнаружить. При помощи этого метода уже было выявлено небольшое количество кандидатов в экстрасолнечные планеты, некоторые из них располагаются у центра Млечного Пути.
При помощи линз Эйнштейна можно измерить даже постоянную Хаббла и космологическую константу. Постоянная Хаббла измеряется путем тщательного наблюдения. Квазары становятся ярче и тускнеют с течением времени. Можно было бы ожидать, что двойные квазары, будучи изображениями одного и того же объекта, мерцали бы в унисон. Используя имеющиеся данные о распределении вещества во вселенной, астрономы могут вычислить долю задержки во времени, потребовавшемся свету, чтобы достичь Земли. Измерив отставание во времени, когда двойные квазары становятся ярче, можно определить, на каком расстоянии от Земли они находятся. Зная же их красное смещение, можно вычислить постоянную Хаббла. (Именно такой метод был использован применительно к квазару Q0957+561, расстояние до которого оказалось равно приблизительно 14 млрд световых лет от Земли. С тех пор постоянная Хаббла была определена путем изучения семи других квазаров. В пределах погрешности полученные при таком изучении результаты совпали с уже имеющимися данными. Интересным отличием этого метода является то, что он совершенно не зависит от яркости звезд (таких, как цефеиды и сверхновые типа 1а), что подчеркивает объективность полученных результатов.)
Этим способом можно измерить и космологическую константу, в которой, возможно, заключен ключ к будущему нашей вселенной. Такой способ вычисления немного неточен, но в принципе, результаты совпадают с данными, полученными при применении других методов. Поскольку миллиарды лет тому назад суммарный объем вселенной был меньше, вероятность обнаружения квазаров, образующих линзу Эйнштейна, в прошлом также была большей. Таким образом, определив количество двойных квазаров на различных этапах эволюции вселенной, можно вычислить приблизительный объем вселенной, а отсюда — космологическую константу, которая движет расширением
вселенной. В 1998 году астрономы из Гарвард- Смитсоновского астрофизического центра осуществили первое приблизительное вычисление космологической константы и пришли к выводу, что она, вероятно, составляет не более 62 % от суммарного содержимого вещества/энергии вселенной. (Действительный результат, полученный при помощи спутника WMAP, составляет 73 %.)Если вселенная заполнена темным веществом, то оно существует не только в холодном космическом вакууме. В сущности, темное вещество можно также обнаружить и у вас в гостиной. Сегодня несколько исследовательских групп соревнуются за первенство в поимке частицы темного вещества в лаборатории. Ставки высоки: ученые той группы, которой удастся поймать частицу темного вещества, проносящуюся сквозь детектор, окажутся первыми, кто открыл новую форму вещества за две тысячи лет.
Основная идея этих экспериментов заключается в следующем: необходим большой кусок чистого материала (такого, как йодид натрия, оксид алюминия, фреон, германий или кремний), в котором может происходить взаимодействие частиц темного вещества. Время от времени частица темного вещества может сталкиваться с ядром атома, создавая характерную картину распада. Фотографируя следы частиц, участвующих в этом распаде, ученые смогут подтвердить присутствие темного вещества.
Экспериментаторы полны сдержанного оптимизма, поскольку находящееся в их распоряжении чувствительное оборудование предоставляет им наилучшую возможность для наблюдения темного вещества. Наша Солнечная система вращается по орбите вокруг черной дыры в центре Галактики Млечный Путь со скоростью 220 километров в секунду. В результате этого наша планета проходит сквозь значительное количество темного вещества. Согласно расчетам физиков, миллиард частиц темного вещества в секунду пролетает сквозь каждый квадратный метр нашего мира, в том числе сквозь наши тела.
Хотя мы живем в «ветре темного вещества», дующем сквозь нашу Солнечную систему, лабораторные эксперименты по обнаружению темного вещества чрезвычайно сложны из-за того, что частицы темного вещества вступают в столь слабое взаимодействие с обычным веществом. Так, ученые ожидают за год обнаружить от 0,01 до 10 событий, происходящих в килограмме материала, наблюдающегося в лаборатории. Иными словами, пришлось бы многие годы внимательно наблюдать за большими количествами материала, чтобы увидеть события, имеющие отношение к столкновениям темного вещества.
До сих пор в ходе таких экспериментов, как UKDMC в Великобритании, ROSEBUD в Канфранке (Испания), HIE в Рустреле (Франция) и Edelweiss в городе Фрежус (Франция), подобных событий обнаружено не было. Эксперимент под названием 111 (otDark Matter- «темное вещество»), проводившийся неподалеку от Рима, вызвал шумиху в 1999 году, когда ученые заявили, что наблюдали частицы темного вещества. Поскольку в детекторе DAMA используется 100 килограммов йодида натрия, он является самым большим в мире. Однако попытки воспроизвести тот же результат при помощи других детекторов не увенчались успехом — не было обнаружено ничего; и это бросило тень сомнения на данные, полученные в ходе эксперимента DAMA.
Физик Дэвид Б. Клайн замечает: «Если детекторы уловят и подтвердят сигнал, то это станет одним из крупнейших достижений двадцать первого столетия… Вскоре может разрешиться величайшая загадка современной астрофизики».
Если надежды физиков оправдаются и темное вещество вскоре будет обнаружено, то оно может представить доказательство в пользу суперсимметрии (а вероятно, с течением времени и в пользу теории суперструн) без использования ускорителей частиц.
Беглый взгляд на частицы, существование которых предсказывает супер симметрия, показывает, что есть несколько потенциальных претендентов на объяснение тайны темного вещества. Одним из них является нейтралино, семейство частиц, куда входит суперпартнер фотона. С теоретической точки зрения нейтралино, кажется, соответствует имеющимся данным. Нейтралино не только имеет нейтральный заряд, а потому невидимо, — оно также массивно (а потому на него воздействует только гравитация), а кроме того, оно стабильно. (Такая ситуация складывается потому, что нейтралино обладает наименьшей массой из всех частиц семейства, к которому оно принадлежит, а потому оно не может распадаться до каких-то более легких частиц). И наконец, последним и, вероятно, важнейшим моментом является то, что во вселенной должно быть полно ней-гралино, что делает их идеальными претендентами на роль темного вещества.