Чтение онлайн

ЖАНРЫ

Шрифт:

Впрочем, погодите. Мы чуть не забыли сказать, что у нашей книги есть одно достоинство, слегка смягчающее указанные недостатки. Главы можно читать в любом порядке и не обязательно целиком. В начале каждой мы кратко сообщаем основные выводы. Какие-то исследования вас, возможно, совсем не заинтересуют, а другие заинтересуют лишь настолько, чтобы прочесть краткую выжимку. Захотите – вернетесь к пропущенной главке (Исследованию № Х) позже.

Ну а те герои, которые осилят всю книгу целиком, получат, мы надеемся, разностороннее представление о том, чем занимаются сегодня эволюционные биологи, над какими проблемами они бьются и какие открытия совершают. Мы чуть было не добавили “и зачем все это нужно”, но вовремя спохватились. Слишком сложный вопрос. Мы не знаем, будет ли какая-то практическая польза от того, что ученые выяснят, зачем нужно половое размножение, почему меняется форма клюва у галапагосских вьюрков и как влияют на наше здоровье гены, унаследованные от неандертальцев. Может, будет, а может, и нет. Если уж совсем начистоту, нами, эволюционными биологами,

движет в основном любопытство, а не прагматизм. Нам повезло жить и работать в странную эпоху, когда некоторые общества почему-то считают правильным направлять крошечную, но все же не бесконечно малую часть своих ресурсов на фундаментальную науку, не сулящую выгод в ближайшее время. Это новое явление: в прежние времена подобные занятия, как правило, были уделом отдельных экзальтированных представителей высших классов, кто мог позволить себе роскошь витать в эмпиреях. Либо монахов, ученой братии на казенном довольствии и при библиотеках. Теперь же получить необходимое образование и заняться фундаментальной наукой может чуть ли не любой желающий. Сдается нам, долго это не продлится. Главное – побольше успеть, пока они там не спохватились. И дело не только в том, что знать, как устроен мир и откуда что взялось, невероятно интересно. Крупный мозг, способный многое понять, – главная отличительная особенность нашего вида. Понимание делает нас людьми. Это и есть, как нам кажется, самая практическая из всех практических польз.

Итак, читать главы можно в произвольном порядке. Чтобы помочь вам сориентироваться, мы снабдили каждый рассказ такими значками:

Значком “мозг” обозначена сложность раздела. Если такой значок один, то перед вами простая глава, двумя значками помечены рассказы средней сложности, тремя – самые заковыристые разделы, требующие умственных усилий. Кто не хочет напрягаться, может выбирать “одномозговые” главы, кто любит головоломки, пусть попробует “трехмозговые”. Количество профессорских шапочек (их тоже может быть от одной до трех) отражает важность исследования для высокой науки и общего понимания проблемы. Ну а по количеству значков “круто!” читатель может судить о практичности, занятности и эффектности исследования. Один значок предупреждает о занудстве, три – об открытиях, о которых хочется срочно рассказать знакомым. Все оценки, разумеется, – наш полный произвол и личные пристрастия. Многие читатели с ними не согласятся. Но все же мы надеемся, что они помогут ориентироваться в разнообразии фактов и открытий, о которых рассказывает эта книга.

Исследование № 1

Есть ли предел приспособленности?

Знаменитый эволюционный эксперимент на бактериях, начатый Ричардом Ленски в 1988 году, продолжает приносить интересные и порой неожиданные результаты. С начала эксперимента сменилось уже более 70 000 поколений подопытных бактерий Escherichia coli (у людей на это ушло бы около двух миллионов лет). Казалось бы, все возможные полезные мутации за это время должны были у бактерий закрепиться, но нет, микробы в колбах у Ленски продолжают накапливать полезные мутации. Их приспособленность к неизменным условиям эксперимента неуклонно повышается. И хотя она растет уже не так быстро, как в начале эксперимента, рост не собирается выходить на плато, как ожидали многие эксперты. В шести из двенадцати популяций закрепились мутации, резко повысившие темп мутагенеза, что лишь ускорило рост приспособленности, несмотря на то что от мутаций, как известно, в среднем намного больше вреда, чем пользы.

Уникальный эксперимент, начатый в 1988 году Ричардом Ленски из Мичиганского университета (США), позволяет с небывалой степенью детальности следить за эволюцией бактерий в реальном времени. Эксперимент проводится параллельно с дюжиной популяций кишечной палочки (Escherichia coli). Все популяции изначально были одинаковыми – их получили от одного и того же предкового штамма. Бактерий выращивают на “минимальной” питательной среде, в которой размножение бактерий сдерживается недостатком пищи (глюкозы). Каждый день из колбы с микробами берут 0,1 мл содержимого и помещают в новую колбу с 9,9 мл свежей питательной среды. Периодически часть популяции замораживают при –80°C и сохраняют для последующего изучения. Бактерии хорошо переносят заморозку, так что в распоряжении исследователей имеется живая “ископаемая летопись” эксперимента. Это мудро, потому что аналитические методики, в частности методы секвенирования (“прочтения”) геномов, сейчас стремительно развиваются и столь же стремительно дешевеют. Живая “ископаемая летопись” позволяет не только следить за эволюционными событиями, но и проигрывать те или иные события повторно, чтобы отделить случайности от закономерностей. Регулярно проводится оценка приспособленности популяций к тем условиям, в которых их содержат. Для этого сравнивают скорости размножения подопытных микробов и контрольного (предкового) штамма, который тоже, конечно же, бережно хранится в замороженном виде.

К 2013 году

в колбах сменилось более 59 000 поколений микробов (каждые 75 дней сменяется примерно 500 поколений). Длительность эксперимента и размер популяций были достаточными для того, чтобы каждая из возможных точечных мутаций (нуклеотидных замен) в ходе случайного мутирования произошла более одного раза (размер генома подопытного штамма кишечной палочки – 4,6 x 106 пар нуклеотидов). Пока это единственная в мире экспериментальная система, позволяющая в деталях проследить эволюционные изменения в большой популяции на таком длительном интервале времени.

Система предельно упрощена по сравнению с природными сообществами микроорганизмов. Во-первых, бактерии размножаются в монокультуре, что позволяет абстрагироваться от межвидовых взаимодействий. По крайней мере, Ричард Ленски и его коллеги надеялись, что позволяет (см., однако, Исследование № 3). Во-вторых, питательная среда бедная, в ней мало пищи, поэтому плотность микробного населения в колбах остается низкой. Это минимизирует влияние бактерий друг на друга посредством выделения тех или иных веществ. В-третьих, популяции бесполые: они лишены средств для горизонтальной передачи генов, так что те передаются только вертикально – от родителей потомкам.

С одной стороны, все эти упрощения делают эксперимент несколько оторванным от реальности. С другой же – позволяют получать понятные, однозначно интерпретируемые результаты. Цель эксперимента – изучить самые фундаментальные эволюционные процессы (мутагенез, отбор, генетический дрейф, адаптацию к среде) в чистом, так сказать, виде. “Сложности” можно будет добавлять потом, по мере необходимости, когда станут понятны основы.

В 2013 году Ленски и его коллеги сообщили об очередном важном результате (Wiser et al., 2013). Ученые сосредоточились на росте приспособленности в подопытных популяциях. Приспособленность, напомним, оценивается как скорость размножения бактерий в стандартных условиях эксперимента по сравнению с предковым штаммом, который сохраняется в замороженном состоянии, так что его в любой момент можно разморозить и использовать в опытах.

В трех из двенадцати популяций в ходе эксперимента произошли настолько радикальные эволюционные изменения, что сравнивать их приспособленность с другими линиями стало трудно. В одной популяции развилась способность использовать в пищу цитрат, присутствующий в среде как вспомогательное вещество. Обычные кишечные палочки питаться им не могут. Это привело к резкому росту плотности популяции. Две другие разучились образовывать колонии на агаре. Из-за этого ученые не смогли применить к ним стандартную методику оценки скорости роста. Поэтому поздние этапы эволюции этих трех популяций были исключены из анализа (а ранние учитывались). Между прочим, во всех трех популяциях закрепились так называемые аллели-мутаторы, то есть аллели, несущие мутации, которые повышают темп мутагенеза (см. ниже).

Ранее было показано, что на протяжении первых 20 000 поколений приспособленность росла с замедлением. Что будет дальше? Следует ли ожидать выхода на плато, то есть достижения постоянного уровня приспособленности, или же плато не получится и приспособленность будет продолжать понемногу расти? Этот вопрос – достижим ли вообще предел приспособленности – очень важен для биологов-теоретиков, ведь речь, по сути, идет о границах творческих возможностей эволюции.

Для начала ученые сравнили приспособленность бактерий из поколений № 40 000 и 50 000. Оказалось, что в среднем подопытные популяции за период смены 10 000 поколений повысили свою приспособленность на целых 3 %. Таким образом, даже после 40 000 поколений адаптация не прекратилась: микробы все еще продолжают накапливать полезные мутации и повышать свою приспособленность.

Затем исследователи проследили траекторию роста приспособленности, заставляя замороженных на разных этапах эксперимента микробов соревноваться с предками (рис. 1.1).

Статистический анализ полученных данных показал, что изменения приспособленности соответствуют степенной модели с неограниченным (хотя и замедляющимся) ростом. Это значит, что приспособленность вовсе не собирается выходить на плато. Иными словами, бактерии, по всей видимости, не намерены останавливаться на достигнутом. Несмотря на долгую жизнь в одних и тех же условиях, у бактерий все еще время от времени закрепляются новые мутации, в данных условиях полезные (напомним, что в эволюционной биологии слово “полезный” обычно используется в смысле “повышающий приспособленность”).

рис. 1.1. Рост приспособленности бактерий за 50 000 поколений. Точками (первые 20 000 поколений) и кружочками (следующие 30 000 поколений) показаны усредненные значения по всем подопытным популяциям. По вертикальной оси – относительная приспособленность (скорость роста по сравнению с предковым штаммом). Пунктиром показаны предсказания моделей: гиперболической (приспособленность асимптотически стремится к предельному уровню; нижняя кривая) и степенной (неограниченный, хотя и замедляющийся рост приспособленности). Параметры моделей основаны на данных по первым 20 000 поколений. Видно, что гиперболическая модель хуже предсказывает динамику приспособленности за последующие 30 000 поколений, чем степенная. По рисунку из Wiser et al., 2013.

Поделиться с друзьями: