Чтение онлайн

ЖАНРЫ

Пещера мечты. Пещера судьбы
Шрифт:

То, что жемчуг часто находили там, где ручья нет, а только капель, было известно давно, но в расчет практически не принималось. Просто вместо слова «ручеек» стали употреблять «ручеек или капель». А именно капель и оказалась единственным фактором.

Когда мы заинтересовались этой проблемой, то концепцию ручейка исключили из вышеизложенных соображений сразу. Остались падающие капли, которые падают как в изолированные ванночки, так и в ванночки на ручьях. Капли в пещерах падают практически везде. Элементарный расчет энергии показал, что падения капли с высоты всего двух-трех метров вполне достаточно, чтобы произвести в такой несжимаемой среде как вода, сотрясение, достаточное для отрыва от субстрата начавшей прирастать жемчужины размером даже более сантиметра.

Несколько сложнее было с механизмом передачи энергии. Энергия капли делится на пять составляющих — энергию брызг, акустической волны (продольной), поверхностной волны (поперечной), ламинарных потоков и турбулентных потоков. То, что только волны, причем только акустические, могли донести энергию на требуемое расстояние

и глубину и передать ее жемчужине без создания излишней турбулентности, было совершенно очевидно. Но — очевидность еще не означает истинности. Нужно было доказать, что они получают достаточную часть общей энергии. Смешно, но общего решения сей тривиальной задачи в современной физике не обнаружилось. Зато — в одной из книг по фотографии обнаружилась реклама новой аппаратуры скоростной съемки, на которой в качестве иллюстрации возможностей приводилась серия фотографий этапов падения капли красной воды в стакан с синей водой. И просто замерив хорошо видимые на фотографиях высоты разлета брызг и фронты течений и волн, мы получили все нужные соотношения даже не прибегая к высшей математике.

* * *

Вот мы и добрались до того состояния пещеры, при котором вода уже только капает и струится по стенам — состояния, образующего «классическую пещеру» со сталактитами и сталагмитами, столь любимыми в большинстве классификаций и популярной литературы. На первый взгляд разнообразие форм здесь грандиозно — это и покровные коры, и разнообразные сталактиты подчас многометровой длины, и сталагмиты, и всевозможные драпировки и занавеси. И в то же время структурно все это практически одно и то же — сферолитовая корка, загнанная геометрией потоков в разные формы. И главное отличие от форм подводной кристаллизации состоит в том, что там толщина коры постоянная, а здесь — переменная. Каждая струйка воды имеет свою специфику стекания, образуя совершенно индивидуальной формы сталактит или драпировку.

Разумеется, есть и другие отличия. Вызванные участием уже знакомой нам механики. Если капель и струйки сильны — появляется турбулентность, и — вместо структурированных сталактитов появляются туфовые. Между прочим, практически все гигантские натеки в основной массе приспособленных к туризму пещер относятся к этому типу — и потому у них нет ни чистоты, ни прозрачности, ни звонкости.

Но и при медленном поступлении воды без механики не обходится. Присмотримся к любому чистому сталактиту, лучше — к так называемой «макаронине», тонкому и почти прозрачному трубчатому образованию. На первый взгляд все просто. Вода поступает из дырочки в потолке, вокруг дырочки начинается кристаллизация, постепенно геометрический отбор уменьшает количество кристаллов, и — остается единственный кристалл в форме тонкостенной трубочки. Собственно, до самого недавнего прошлого их рост именно так и трактовался. Только вот почему дырочка в потолке всегда оказывается именно в той точке, откуда воде удобно капать? Статистически не проходит. Достанем лупу и внимательно посмотрим на кончик сталактита. Ага На кончике-то не грани головки, а целая поросль уже знакомых нам скелетных кристаллов, свидетельствующих о разбалансированной среде кристаллизации. Откуда дисбаланс степени насыщения и скорости перемешивания? Из той же механики — гидродинамический удар при отрыве капли. А монокристаллическое тело трубочки? Оттуда же. Пульсация давления в канале, вызываемая отрывом капель, вызывает собирательную перекристаллизацию — растворение мелких кристаллов с одновременным ростом крупных. Вот и получилась вся структура сталактита. А куда делось питание по каналу? Да оно просто не нужно — центральный канал сталактита есть не причина, а следствие. Кстати, можно заметить, что диаметр трубки — прекрасный индикатор изменения состава растворов. Ничтожные вариации отображаются в поверхностном натяжении, которое контролирует диаметр капли — и трубка заметно меняет свой диаметр. Между прочим — пора восстановить некоторую справедливость, а то уж больно получается, что всех ругаю, а себя хвалю. Так вот на тему макарон — в первом черновике этой главы я привел именно ту теорию, которую сейчас и раздолбал. И подобных мест в этой главе, где трактовка с момента написания первого черновика изменилась радикально — не менее четырех. Собственно, именно из нежелания пичкать читателя устаревшими представлениями, эта глава — единственная во всей книге — практически полностью переписана в последний момент перед печатью. Хотя — как там у Савченко сказано в «советах начинающему гению»? Кажется, так: «Не спеши объяснять другим то, что сам только что понял: ты понял далеко не все». Проигнорирую. Ибо гениев здесь нет, а у него же сказано: «Доставляет удовольствие еще раз вникнуть в дело, растолковывая его другому».

На сталагмитах происходит примерно то же самое: рост мелких скелетных кристаллов на ударах капли с их последующей перекристаллизацией. Но здесь перекристаллизация уже устроена по-другому, так как может происходить только на поверхности — у сталагмита нет канала. И потому при перекристаллизации возникает ориентированный геометрический отбор, при котором лучше выживают вертикальные индивиды. И — достаточно высокий и тонкий сталагмит, начиная с некоторой высоты, тоже становится монокристаллическим.

Сталактиты и сталагмиты, несмотря на свою очевидную простоту, вообще чрезвычайно поучительны в смысле всевозможных заблуждений. Один пример я уже привел, приведу и второй. Если кто уже читал что о пещерах, даже в специальной литературе, — помнит наверняка. На потолке растет сталактит, на полу под ним — сталагмит, дорастая друг до друга, они срастаются,

и получается колонна — сталагнат. Опять вопрос на засыпку: а почему же там, где растут самые крупные сталагмиты, никаких сталактитов над ними нет и в помине? И наоборот — под макаронами не бывает сталагмитов. Тот же Максимович, классификацию которого я охаял, еще в шестидесятых додумался померить расходы воды — и обнаружил, что сталактиты растут при меньших расходах, чем сталагмиты. Причем — и для тех и для других есть жесткая корреляция формы с интенсивностью питания. По мере убывания интенсивности выстраиваются сталагмиты-холмы, потом сталагмиты-пагоды, потом сталагмиты-палки, дальше идут конические сталактиты, и наконец — макароны. Остается лишь добавить, что сталагмиты первых двух типов — туфовые, и часть конических сталактитов — тоже. Так вот до сих пор практически везде описывается опровергнутая схема с одновременным ростом. И — на экскурсионных маршрутах в оборудованных пещерах предлагается представить себе, за какой срок мог вырасти вот этот вот десятиметровый сталагмит из тех вон изредка падающих капель. А из капель-то в действительности вырос только крошечный сталактитик над ним. Сам же сталагмит давно прекратил свой рост, а когда рос — с потолка шла довольно мощная струя.

А еще интереснее становится, когда вмешивается химия. Понятно, что описанный механизм имеет смысл только для кальцита. Если же обратиться к сталактит-сталагмитовым агрегатам других минералов, для которых газовый обмен не актуален, так их большинство спелеоминералогов вообще за таковые не признает — настолько разительна разница.

Например, знаменитые гипсовые «люстры» из Кап-Кутана, Фата-Морганы, Lechuguilla Cave и Torgac Cave. Трудно в этих висящих с потолка кустах трех-четырехметровых ограненных кристаллов опознать обычные сталактиты. Но — тем не менее. Гидродинамика не работает, и сталактит растет за счет постепенного испарения струящейся по его поверхности воды. И — кристаллы начинают ограняться. А ограняясь — начинают влиять на распределение пленочных потоков на собственной поверхности. Возникает обратная связь — и сталактит «расцветает» пучком сверкающих кристаллов.

Кристаллография тоже может подбросить загадок. Взять, например, арагонитовые сталактиты. Цепочки из висящих друг на друге сферических сегментов безо всякого канала. Как в зале «Дамские Пальчики», который так и назван именно из-за их вида — непривычного, если не неприличного. Хотя химия в точности та же, что и для кальцита. А дело в том, что арагонит в обычных условиях всегда растет кристаллами, расщепленными до слабосвязанных пучков «ежей». И перекристаллизация скелетов идет не в монокристалл, а в эти пучки. Которые за счет своей пористости перераспределяют все питание (опять обратная связь), растя сегментом до тех пор, пока хватает капиллярных сил на удержание перекристаллизующего раствора, а потом — «схлопываясь» в каплю и начиная новый сегмент.

* * *

Заговорив о капиллярных силах и силах кристаллизации, мы органично дошли до той стадии в развитии пещеры, когда вода уже не течет и не капает — теперь она вся связана капиллярными силами в тонкие пленки, тем самым — практически не подчиняясь силе тяготения.

И вот здесь возникают, пожалуй, наиболее эффектные агрегаты — кораллиты и кристалликтиты. Механизм их роста — один из наиболее показательных, и он даже легко моделируется в домашних условиях (естественно, на более растворимых веществах). В наше время выращивание дома кораллитов и кристалликтитов из какого-нибудь медного купороса было весьма популярным школьным развлечением. Медленно испаряющаяся капиллярная пленка имеет очень своеобразную структуру массопереноса, управляемую законами физики испарения. Как известно, испарение с поверхности идет весьма неравномерно и зависит от локальной кривизны. Чем меньше радиус кривизны, тем интенсивнее испарение. На выступающих частях оно гораздо сильнее, чем на плоских или вогнутых. И — пленка подтягивается к ближайшему острию. Здесь уже разница между кальцитом и другими минералами нивелируется — все равно, происходит кристаллизация как непосредственный результат испарения, или опосредованно — через капиллярную пленку. Результат один — самый быстрый рост будет на самых острых выступах субстрата.

А что есть растущий кристалл? Тоже выступ, причем даже более острый. Да еще и снабженный не менее острыми ребрами по бокам. Опять обратная связь. И — на каждом гребешке, на каждом камешке расцветает ветвистый кустик — кристалликтит. С очень своеобразной конкурентной схемой, при которой выживают кристаллы, растущие с выступов в сторону самого свободного пространства. И «кустик» здесь — не аллегория, а именно аналогия. Ровно такую же геометрию конкуренции между ветвями имеет и самый настоящий живой куст какой-нибудь черники. И тоже на кочке растет. Природа едина и подчиняется одним и тем же законам физики.

Если кристаллы расщепляются, то вместо кристалликтитов растут несколько более распространенные кораллиты, более похожие на виноградные грозди. Несмотря на столь различный вид, при внимательном рассмотрении можно убедиться, что геометрическая схема у них в точности такая же.

Две ветви кораллитового или кристалликтитового куста никогда не срастаются — при их сближении получается вогнутость, в которой испарение блокировано. Словом, и в этом каменный куст ведет себя чрезвычайно похоже на обычный, живой. У того тоже там, где ветви начинают стеснять друг друга, их рост прекращается, а глобально куст растет именно собирая воду с окрестностей и испаряя ее. У морских кораллов, давших название этим агрегатам, сходства с ними как раз меньше: коралл берет материал для постройки из окружающей воды, и потому форма и поведение у него контролируются совсем другими законами.

Поделиться с друзьями: