Пьезоэлектричество
Шрифт:
Возьмите обыкновенную школьную резинку. В каком направлении её ни сдавливать, она одинаково упруга. Значит, упругие свойства резины не зависят от направления приложенной силы. Тела, у которых упругость, прочность и другие физические свойства одинаковы во всех направлениях; называются изотропными. Слово «изотропный» имеет греческое происхождение и означает — одинаковый по всем направлениям. К числу изотропных относятся аморфные тела, а также полукристаллические тела при условии, что зёрна-кристалики в них расположены друг относительно друга в полном беспорядке (примером таких тел могут служить литые металлы).
Но изотропны далеко не все тела. Взгляните на кусок дерева. Он имеет волокнистую структуру.
К числу анизотропных веществ относятся и монокристаллы. Силы сцепления между атомами и молекулами, образующими кристаллическую решётку, в разных направлениях различны. Поэтому для многих кристаллов характерна спайность — способность раскалываться по определённым плоскостям. Это свойство легко обнаружить, например в слюде, которая свободно расщепляется на параллельные слои.
Изотропность или анизотропность различных веществ часто характеризуется их твёрдостью.
Твёрдость — это способность тела сопротивляться проникновению в него другого тела, имеющего форму острия.
Раскалите докрасна стальную пластинку и затем опустите её в холодную воду. Такая операция называется закалкой. Закалённая пластинка значительно твёрже незакалённой. Это легко обнаружить, царапая пластинки каким-либо остриём. На незакалённой пластинке царапина будет заметно глубже, чем на закалённой.
Твёрдость изотропных веществ одинакова во всех направлениях. Твёрдость анизотропных веществ различна в зависимости от направления.
Это нетрудно проверить, слегка ударив каким-либо закруглённым остриём по определённой грани кварцевого кристалла. В результате удара на поверхности кварца образуется трещина, имеющая треугольную форму. Если же ударить тем же остриём по пластинке из воска, то форма углубления будет круглой.
Оптические свойства кристаллов, их теплопроводность и другие свойства также различны в разных направлениях.
Покройте боковую грань кристалла кварца воском. Затем коснитесь середины грани кончиком нагретой иглы. Поверхность кварца воспримет тепло, и воск вокруг иглы расплавится. Если бы теплопроводность кристалла была равной во всех направлениях, расплавленный участок имел бы вид круга. В действительности же этот участок имеет форму эллипса (рис. 8).
Рис. 8. Опыт, показывающий, что теплопроводность кварцевого кристалла зависит от направления.
Это означает, что теплопроводность кристалла различна в разных направлениях.
Чтобы знать свойства кристалла в любом направлении, нужно установить несколько основных, особо характерных направлений, так называемых координатных осей. Тогда направление любой прямой легко определить, измерив углы между этой прямой и осями.
В кристаллографии часто пользуются прямоугольной системой координат. Эта система состоит из осей, проходящих в трёх взаимно перпендикулярных направлениях (рис. 9).
Рис. 9. Прямоугольная система координат.
Координатные оси обозначаются латинскими буквами х, у и z (читается: икс, игрек, зет). Ясно, что каждой оси отвечает бесчисленное множество воображаемых параллельных линий, поскольку в одних и тех же направлениях свойства кристалла неизменны.
Для примера на рис. 10 показан кристалл кварца и его координатные оси.
Рис. 10. Кристалл кварца и его координатные оси. Каждой оси соответствует бесчисленное множество параллельных направлений.
Ось z, проходящая через вершины кристалла, называется главной, ось х — электрической, а ось у — механической. В кристалле кварца имеется 3 электрических и 3 механических оси. В направлениях х1, х2, x3 свойства кварцевого кристалла одинаковы. Они также одинаковы и в направлениях y1, y2, y3. Таким образом, кристалл кварца состоит как бы из трёх одинаковых, повторяющихся частей. Подобные тела называются симметричными.
На рис. 11 изображены круг, шестиугольник и пятиконечная звезда. Всё это примеры симметричных фигур. Из рисунка видно, что каждую симметричную фигуру можно разделить на несколько одинаковых частей линиями, получившими название осей симметрии.
Рис. 11. Примеры симметричных фигур — круг, шестиугольник и пятиконечная звезда.
Если вас и ваше отражение в зеркале изобразить на бумаге, то также получится симметричная фигура, причём линия, изображающая на рисунке плоскость зеркала, будет осью симметрии. Путём поворота вокруг оси симметрии симметричные части фигуры можно совместить друг с другом.
На рис. 12 показан параллелограмм. Точка С, в которой пересекаются его диагонали, является особой точкой. В каком бы направлении мы ни проводили через неё прямую линию, отрезки, отсекаемые на этой прямой противоположными сторонами параллелограмма, всегда будут равны между собой (СМ = СН, CM1 = СH1 и т. д.). Точку С называют центром симметрии данной фигуры.
Рис. 12. Центр симметрии параллелограмма.
В кристаллографии понятия симметрии и центра симметрии имеют более широкий смысл. Здесь под словом симметрия понимается не только закономерная повторяемость одинаковых по форме и размеру частей кристалла, но и повторяемость его физических свойств — упругости, твёрдости и т. д. Если провести через центр симметрии кристалла произвольную прямую, то эта прямая пересечёт поверхность кристалла в двух одинаково удалённых от центра точках. Более того, в любых равноудалённых от центра симметрии точках, лежащих на такой прямой, физические свойства кристалла будут одинаковы.