Чтение онлайн

ЖАНРЫ

Шрифт:

К счастью, опыты в физике ставят не только для проверки теорий. И в то время, когда Лебедев завершал свой знаменитый эксперимент, уже существовал другой, столь же тщательный, но более непонятный. В 1887 году Генрих Рудольф Герц (1857–1894) (тот самый, который доказал волновую природу электромагнитного излучения и тем самым справедливость всей электродинамики Максвелла) обнаружил явление, впоследствии названное фотоэффектом. Суть его в следующем.

Если свет ртутной лампы (теперь мы такие лампы называем кварцевыми) направить на металл натрий, то с поверхности его полетят электроны.

В конце века большая часть физиков уже ясно сознавала, что атом сложен, и потому само по себе это явление никого не удивило. Довольно быстро все согласились с тем, что электроны

в опыте Герца вылетают из атомов натрия под действием излучения кварцевой лампы.

Странно и непонятно было другое — законы этого явления. Установлены они были Филиппом Ленардом (1862–1947) и Александром Григорьевичем Столетовым (1839–1896) на рубеже XX века. Эти учёные измеряли число выбитых электронов и их скорость в зависимости от интенсивности и частоты падающего излучения.

Мы уже знаем, что лучи, возникающие внутри атомов, различаются между собой не только длиной волны (или что то же, частотой ), но также интенсивностью. Это ясно видно на спектрограммах: некоторые линии там значительно ярче других, например в жёлтом дублете натрия линия D2 вдвое ярче линии D1.

Наш предыдущий опыт и знания о волнах подсказывают нам, что действие волн тем заметнее, чем больше их амплитуда. Чтобы убедиться в этом, достаточно выйти на берег моря во время шторма. Значит, увеличивая амплитуду, мы тем самым увеличиваем интенсивность лучей. Интенсивность излучения можно увеличить и по-другому: увеличивая число излучающих атомов. Поэтому, если вместо одной ртутной лампы взять две, три, десять, то интенсивность излучения возрастёт во столько же раз. Естественно ожидать, что и энергия выбитых электронов вырастет в такой же пропорции.

Но энергия электронов оставалась прежней, менялось лишь число их.

Такова первая несообразность, которая ожидала учёных в конце опытов. Зато энергия зависела от частоты падающего излучения, и притом сильно.

Кварцевая лампа излучает фиолетовые и ультрафиолетовые лучи. Оказалось, что если вместо них на поверхность натрия направить пучок красных лучей, то электроны не вылетят вообще.

— Если излучение — волновой процесс (а это строго доказано), такого не может быть, — утверждали одни.

— Но ведь это происходит! — возражали другие.

Если бы несколько прибрежных утёсов неожиданно обрушились на ваших глазах, почти наверное вы бы стали искать внешние причины такой катастрофы. Конечно, волны моря постепенно размывают берег, и время от времени утёсы рушатся, но все знают, как редко это бывает. Но если, обернувшись к морю, вы обнаружите там военный корабль, который ведёт по берегу пальбу из орудий главного калибра, вы сразу догадаетесь, что причина внезапных разрушений не волны, а снаряды, хотя их энергия и меньше, чем общая энергия морских волн. Однако энергия волн равномерно распределена по всему побережью, и нужны века, чтобы мы увидели результаты их ежедневной работы. По сравнению с этой работой энергия снаряда ничтожна, зато она сосредоточена в малом объёме и выделяется мгновенно. Если к тому же снаряд достаточно велик — он разрушит утёс. Последнее важно: действительно, все свойства снаряда, кроме размеров, присущи и пуле, однако сокрушить скалу ей не под силу.

Примерно так рассуждал Эйнштейн, когда предложил своё объяснение явления фотоэффекта. Он знал об открытии Планка, но для него, с его непредвзятой манерой мышления, гипотеза о квантах света не казалась столь ужасной, как самому Планку. Поэтому он был первый, кто не только поверил в неё, но и применил для объяснения новых опытов. Эйнштейн утверждал: свет не только испускается квантами, как того требовала гипотеза Планка, но и распространяется так же — квантами. Поэтому свет, падающий на поверхность металла, подобен не морским волнам, а артиллерийским снарядам. Причём каждый такой снаряд-квант может выбить из атома только один

электрон.

Согласно Планку (вспомните первую главу), энергия снаряда-кванта равна h. По мысли Эйнштейна, какая-то часть её, назовём её P, расходуется на то, чтобы вырвать электрон из атома, а остальная часть — на то, чтобы разогнать его до скорости v, то есть сообщить ему кинетическую энергию (mv2)/2. Оба эти утверждения можно коротко записать в виде простого уравнения:

h=P+(mv2)/2

Стоит принять эту гипотезу — и явление фотоэффекта проясняется. Действительно, пока размеры снарядов малы (красный свет), они не могут выбить электрон из атома (h < P), как бы много мы их ни посылали. Если же мы начнём увеличивать их размеры (фиолетовый свет), то в конце концов их энергия станет достаточной для выбивания электронов (h > P). Но по-прежнему энергия «снарядов-квантов» будет зависеть только от их величины (то есть от их частоты ), а не их числа.

Шестнадцать лет спустя глубокую простоту уравнения Эйнштейна Шведская академия наук отметила Нобелевской премией. Но в 1905 году, когда уравнение было написано впервые, на него нападали все, даже Планк. Он любил Эйнштейна и потому, убеждая прусское министерство просвещения пригласить его на работу в Берлин, просил «…не слишком сильно ставить ему в упрёк» гипотезу относительно явлений фотоэффекта.

Планка можно понять: только что вопреки общепринятым традициям и своему желанию он ввёл в физику квант действия h. Лишь постепенно приходило к нему сознание неизбежности этого шага. Даже в 1909 году он признавался Эйнштейну: «Я ещё плохо верю в реальность световых квант». Однако дело было сделано: «…Планк посадил в ухо физикам блоху», — говорил Эйнштейн двадцать лет спустя, и она не давала им покоя, хотя они и пытались её не замечать. Во всяком случае, Планк постарался ввести квант действия так, чтобы не пострадала волновая оптика — здание чрезвычайной красоты, созданное в течение двух столетий. Поэтому согласно Планку свет только испускается квантами, но распространяется по-прежнему как волна; только в этом случае удавалось сохранить все результаты волновой оптики.

А Эйнштейн поступал так, как будто до него вообще не существовало физики или, по крайней мере, как человек, ничего не знающий об истинной природе света. Здесь сказалась замечательная особенность Эйнштейна: в совершенстве владея логикой, он больше доверял интуиции и фактам. Для него не было случайных фактов в физике. Поэтому в явлениях фотоэффекта он видел не досадное исключение из правил волновой оптики, а сигнал природы о существовании ещё неизвестных, но глубоких законов.

Так уж случилось, что исторически сначала были изучены волновые свойства света. Только в явлениях фотоэффекта физики впервые столкнулись с его корпускулярными свойствами. У большинства из них инерция мышления была настолько велика, что они отказались этому верить. «Не может быть!» — повторяли они, подобно фермеру, увидевшему жирафа впервые в жизни.

Эйнштейн, конечно, знал историю оптики не хуже других. Но его независимый ум равнодушно относился к её солидному авторитету. Все прежние заслуги оптики для него не имели значения, если они не могли объяснить единственный, но бесспорный опыт. Он глубоко, почти религиозно, верил в единство природы, и для него один такой опыт значил не меньше, чем вся история оптики. А его честность не позволила ему пройти мимо неугодного факта.

В науке по-настоящему опасны только неверные опыты: опытам принято верить. Но любую гипотезу — какой бы привлекательной она ни казалась — всегда тщательно проверяют. Даже если она окажется ложной, опыты, которые её опровергли, часто приводят к результатам более ценным, чем сама гипотеза. Проверили и гипотезу Эйнштейна — она оказалась истинной.

Поделиться с друзьями: