Почему мы не проваливаемся сквозь пол
Шрифт:
Рис. 21. Рост клиновидного кристалла в стекле.
Если в стеклоподобном аморфном материале трещина, берущая начало от того или иного местного дефекта, не распространяется, то почему же и каким образом он все-таки разрушается? В таких случаях материал, подобно пластилину, течет и разрушается от сдвига. Поскольку стекло начинает течь при комнатной температуре лишь под действием очень большого напряжения и к тому же оно легко разрушается от распространения трещины, постольку оно, как и другие аморфные материалы, практически всегда разрушается хрупким образом. Мы к этому привыкли, и нам трудно представить себе, что они могут разрушаться иначе. На самом же деле, если растрескивание стекла, которое происходит при растяжении, предотвратить,
Совсем недавно Марш показал, что стекло, если в нем почти отсутствуют трещины, действительно течет. При комнатной температуре напряжение течения в стекле обычно превосходит 350 кг/мм2. Интересно, что температура сравнительно слабо влияет на тенденцию к разрушению стекла путем распространения трещин, в то время как касательное напряжение течения сильно зависит от температуры. Когда мы нагреваем стекло, не доводя его до плавления, напряжение течения снижается быстрее, чем напряжение хрупкого разрушения. Именно поэтому нагретое стекло (не обязательно очень горячее) довольно легко гнется, формуется и поддается выдуванию. Наоборот, свободное от дефектов стекло становится прочнее при охлаждении, так как при этом повышается его сопротивление течению. Из-за этого стекло с хорошей поверхностью при температуре -180° С по своей прочности примерно в два раза превосходит то же стекло при комнатной температуре.
Обобщая все сказанное выше, можно заключить, что всегда существуют два механизма, ведущих спор за право разрушить материал, - пластическое течение и хрупкое растрескивание. Материал уступает тому или другому из них. Если он начинает течь, прежде чем растрескается, то, значит, он пластичен. Если же он растрескивается до того, как начал течь, то мы имеем дело с хрупким материалом. Потенциальные возможности обоих видов разрушения заложены во всех материалах.
(обратно)
Прочность хрупких кристаллов и рассказ об усах
Все, что мы говорили, довольно хорошо объясняет прочность стекол и таких аморфных минералов, как кремень или вулканическая лава обсидиан. Но подавляющее большинство твердых тел, природных и искусственных, имеет кристаллическую структуру. Существует своего рода предрассудок, что кристаллические материалы не могут быть прочными. Так, слесарь, обнаружив сломанный коленчатый вал или какую-либо другую деталь автомобиля, может сказать, что "она кристаллизовалась". В каком состоянии была эта деталь до "кристаллизации", он не объяснит, ясно, что она не была аморфной. Нет нужды повторять, что все металлы, почти все минералы, большинство керамических материалов и привычные нам сахар и соль - вещества кристаллические. Соображения здравого смысла вряд ли приведут к заключению, что только регулярная упорядоченная упаковка атомов или молекул может быть причиной малой прочности твердого тела. И действительно, это не так.
Однако, когда мы имеем дело с твердыми хрупкими кристаллами, на практике их прочность оказывается даже ниже, чем прочность монолитного стекла, и в своем "сыром" виде неметаллические кристаллы вполне заслуживают того презрения, с которым к ним относятся инженеры.
Теперь самое время поговорить об "усах". Мы часто слышим о "металлических усах", как если бы они были единственным типом усов. На самом же деле эти усы менее обычны и менее интересны, чем неметаллические, поэтому мы будем говорить главным образом о последних. Усы, о которых пойдет речь, не имеют ничего общего с человеческим волосом и представляют собой длинные тонкие игловидные кристаллы, которые могут быть случайно или преднамеренно выращены из большинства веществ. Существует много способов их выращивания. Толщина усов обычно составляет 1–2 мкм, хотя их длина может измеряться миллиметрами и даже сантиметрами.
Рис. 22. Усы, растущие на металличеcкой поверхности
Иногда усы вырастают случайно на металлических поверхностях (рис. 22), и, когда эта поверхность оказывается элементом электрической схемы, вполне возможно короткое замыкание, которое иногда оказывается досадным, иногда дорогостоящим, а порой и опасным, смотря по обстоятельствам. Такого рода металлические усы были известны довольно давно, но к ним относились разве что
с некоторым любопытством, когда к этому не примешивалось чувство досады. Так продолжалось до 1952 года, когда Херрингу и Голту случилось изогнуть несколько оловянных усов. Они заметили при этом, что при деформации ~2% усы остаются упругими. Такая упругая деформация соответствовала напряжению, которым никто никогда не нагружал не только олово, но и, возможно, никакой другой металл. Это было похоже на поведение тонких волокон с аномально высокой прочностью, что, естественно, привлекло к себе огромное внимание.Херринг и Голт работали с оловом. Олово - металл, а от металла каждый почему-то ожидает прочности. Меня же в то время занимал вопрос, можно ли сделать прочными и обычно слабые неметаллические кристаллы. И вот однажды, это было в 1954 году, я зашел на склад химических реактивов и попросил дать мне что-нибудь такое, что растворялось бы в воде, а кристаллизовалось бы в виде игл. Кладовщик дал мне бутылку с гидрохиноном, веществом, которое обычно используется в фотографических проявителях. Бутылка была полна сухих кристаллов толщиной примерно в обычную иглу и около сантиметра длиной. Оперируя скальпелем, я быстро понял, что их прочность пренебрежимо мала. Затем я растворил несколько гидрохиноновых кристаллов в воде, нанес каплю этого раствора на предметное стекло микроскопа и стал ждать, когда вода испарится. В процессе испарения в поле зрения микроскопа вырастали игольчатые кристаллики, которые были намного меньше растворенных мною.
Новые кристаллы имели нитевидную форму. Вначале они были так тонки, что их едва можно было различить в оптический микроскоп. Пошевелив их иглой, я обнаружил, что эти маленькие нити очень прочны, но установить точно, насколько они прочны, - было очень непросто (рис. 23).
Рис. 23. Нитевидные кристаллы, или усы гидрохинона, растущие из водного раствора. Обратите вниамние на неясное изображение - это ус, который освободился от мешающих ему механических ограничений и выпрямляется (параллельные полосы вызваны дифракцией - это моя оплошность!) (100).
Это меня взволновало, и очень скоро я начал пробовать кристаллы разных веществ, взятых с полок собственной лаборатории и лабораторий своих коллег. Некоторых навыков и минимальной хитрости было достаточно, чтобы получить в виде очень тонких нитей - усов кристаллы почти любого растворимого твердого вещества. В ход пошли горькая соль и даже хлористый натрий, обычная поваренная соль. И во всех случаях усы оказывались прочными. Можно было предположить, что их прочность как-то связана с влажностью их поверхности. В 20-е годы русский ученый А.Ф. Иоффе обнаружил, что некоторые вещества после смачивания становились прочнее. Правда, есть и такие вещества, которые при этом, наоборот, разупрочняются. Однако, насколько я мог определить, высушивание усов не сказывалось заметно на их прочности.
На этой стадии работы было много трудностей. Например, мы не имели достаточно надежных методов измерения прочности усов.
Обычно мы изгибали усы под микроскопом с помощью игл; измерив приблизительно толщину и радиус кривизны, можно было определить деформацию при разрушении с помощью простой теории изгиба балок. Можно себе представить, сколь дьявольски неудобен и неточен был этот метод.
Усы обычно зарождались в виде чрезвычайно тонких нитей, которые затем становились толще. Заметив это, я усовершенствовал методику изгиба: при зарождении уса я начинал взбалтывать воду и затем оставлял усы утолщаться до тех пор, пока они не ломались. Это была менее грубая методика, но все еще весьма неудовлетворительная.
Как раз в это время (1956 год) ко мне пришел работать Дэвид Марш и буквально первыми его словами были: "Почему бы не сделать подходящую разрывную машину?" Кажется, я без обиняков прогнал его, посоветовав не заниматься глупостями. Усы были слишком малы, чтобы рассмотреть их невооруженным глазом, мне представлялось, что нельзя сделать испытательную машину для столь крошечных образцов. Марш ушел и занялся отнюдь не глупостями: он возвратился с микроиспытательной машиной, которая на удивление всем… работала. Сконструировал и построил он ее сам. Один из вариантов машины Марша (Марк-III) пошел в серийное производство, и сегодня, пожалуй, не найдется ни одной уважающей себя лаборатории, которая бы ее не имела. На этой замечательной машине можно при необходимости испытывать волокна с поперечным сечением 0,1 мкм2 (по существу их не видно в оптический микроскоп) и длиною около четверти миллиметра. Она способна измерять удлинения менее чем 5 А, что соответствует примерно разрешению хорошего электронного микроскопа[27].