Почему мы не проваливаемся сквозь пол
Шрифт:
Что такое материаловедение
Прочность даже самого крупного сооружения в какой-то мере зависит от химических и физических процессов, которые происходят на молекулярном уровне. Поэтому, говоря о материалах, нам придется оперировать физическими величинами, огромными и совершенно ничтожными, переходить от химических представлений к чисто техническим, совершать скачки из одной области науки в другую: материаловедение, выражаясь современным языком, находится на стыке наук.
Стоит лишь задуматься о механических свойствах твердого тела, как становится ясным, что какие-то представления о поведении материалов есть у каждого из нас, но далеко не всегда мы можем понять, почему материалы ведут себя именно так, а не иначе. Правда, на вопрос "почему" ответить всегда сложнее. Однако, прежде чем доискиваться до причин какого-либо явления, его следует описать - точно и объективно. Это дело инженеров. Если дилетант может довольствоваться смутными представлениями о том, как деформируются и разрушаются твердые тела, то инженер обязан быть точным, и немало поколений инженеров совершенствовало это описание, стремясь сделать его предельно
Кто сомневается во всем этом, пусть попробует объективно описать разницу между механическими свойствами, например, мела и сыра[5]. Как правило, инженеру под силу такая задача. Более того, если бы мы захотели по строить некое сооружение, используя один из этих материалов, он смог бы предсказать характер его разрушения. Однако объяснить разницу между сыром и мелом нам могут только представители определенных областей науки.
Твердые тела сохраняют свою форму благодаря химическим и физическим связям, существующим между их атомами и молекулами. Любое тело можно вывести из строя несколькими различными путями - механическим разрушением, плавлением или воздействием химическими реагентами. Так как в каждом случае должны быть разорваны какие-то внутренние связи одного типа, можно было бы предположить, что существует некая простая связь между всеми названными фoрмами разрушения, и сегодня, когда о природе межатомных взаимодействий химики и физики знают довольно много, им не так уж трудно дать объяснение и прочности, и другим механическим свойствам материалов, так что, по существу, изучение разрушения материалов должно бы стать разделом химии.
В дальнейшем мы увидим, что прочность связана - как этого, конечно, и следовало ожидать - с химическими взаимодействиями, но связь эта косвенная, и обнаружить ее средствами классической химии или физики невозможно. Оказывается, мы не только нуждаемся в интерпретации результатов этих наук средствами классической теории упругости, но нам необходимо ввести еще и такие сравнительно новые и очень важные понятия, как дислокации и концентрация напряжений.
В свое время их введению сопротивлялись многие ортодоксы. До недавних пор наука о прочности материалов несомненно отставала от других дисциплин, которые на первый взгляд кажутся и более трудными и более эффектными. В течение долгого времени мы гораздо лучше были осведомлены о радио или о внутреннем строении звезд, чем о том, что происходит в куске стали. По-моему, причина здесь не столько в крайней сложности предмета, сколько в трудностях, связанных с объединением достаточного числа людей, занятых в различных областях науки, для совместной работы над одной общей проблемой.
Химики, естественно, предпочитают объяснять все свойства веществ на языке химии, но когда они, наконец, разделываются с трудностями, порожденными использованием инженерами иных единиц измерения (например, для энергии), то часто обнаруживают, что рассчитанные ими параметры прочности не только отличаются от истинных на несколько порядков, но даже качественно не имеют ничего общего с результатами экспериментов. После этого они склонны забросить все, утверждая, что предмет и не интересен, и не важен. Отношение физиков к этой проблеме несколько иное, но очень многие из них в течение долгого времени гнались за другим зайцем: надо было разбираться в том, что происходит внутри атома.
Бесспорно, в наши дни совместными усилиями физиков и металловедов удается в удивительных подробностях разгадать происходящие в металлах процессы, но классическое металловедение слишком долго оставалось чисто описательной наукой. Металловеды знали, что, добавив тот или иной элемент к сплаву, они как-то изменят его свойства. Еще они знали, что нагрев, охлаждение, ковка меняют механические свойства металлов. С помощью оптического микроскопа они могли наблюдать лишь сравнительно грубые различия в микроструктуре. Но, несмотря на то что наблюдаемые структуры как-то определяли механические свойства металлов, эта связь сама по себе не могла считаться убедительным научным объяснением механического поведения металлов и сплавов.
(обратно)
Суеверия и ремесленничество
Если наука о материалах оказалась тяжела даже для ученых, вряд ли можно предположить, что наши предки вполне осознанно обрабатывали и использовали материалы. И в самом деле, ни одна из технических дисциплин не изобилует суевериями в такой степени. Можно было бы (а быть может, и должно) написать объемистую полную ужасов книгу о предрассудках, связанных с получением материалов. Так, в древнем Вавилоне при изготовлении стекла использовались человеческие эмбрионы; японцы закаливали мечи, погружая их докрасна
раскаленными в тела живых пленников. Обычными были случаи погребения жертв в основаниях зданий и мостов, лишь в древнем Риме людей заменили чучелами. Подобные обычаи связаны с примитивной философией, которая каждую конструкцию наделяла собственной духовной жизнью.Со временем человек стал менее жестоким, но не менее суеверным. Во всяком случае, некоторые пережитки иррационального чувствуются даже в нашем сегодняшнем отношении к материалам. Так, зачастую весьма бурно обсуждаются вопросы о применении старых и новых, натуральных и синтетических материалов, причем бушующие на такого рода дискуссиях эмоции далеко не всегда основываются на реальных знаниях или экспериментальных доказательствах. Эти предубеждения наиболее сильны в быту ("Может ли что-нибудь сравниться с шерстью?" или "Нет ничего, подобного коже!"), но иногда они проникают и в область проектирования серьезных конструкций.
Издавна человеку казалось удобным видеть в материалах некую жизненную силу, от которой якобы зависит их работоспособность. Например, говорили, что вещи ломаются потому, что их покидает некая сила. Во время войны я имел дело с поставками бамбука, который шел на изготовление аэростатов заграждения. Как-то один импортер бамбука жаловался мне на трудности хранения прутьев необходимой нам длины: для них требовалось слишком много места, поскольку их нужно было складывать горизонтально. На мое предложение хранить бамбук в вертикальном положении собеседник заявил, что это невозможно, так как сила бамбука вылетит из него через обращенный кверху конец. В прошлом при выборе материала и проектировании конструкции полагались лишь на инстинкт и опыт. Среди лучших ремесленников, работавших по сложившимся традициям, встречались иногда блестящие мастера. Однако было бы ошибкой преувеличивать возможности традиций, мастерство ремесленника могло быть великолепным, но инженерное решение его изделий, как правило, в лучшем случае было посредственным, а иногда оказывалось удивительно плохим. Повозки теряли колеса, потому что каретных дел мастерам не хватало смекалки крепить их подобающим образом. Точно так же деревянные корабли в плавании почти всегда имели злосчастные течи, потому что кораблестроители тех дней не понимали природы касательных напряжений, которые, боюсь, и сегодня для многих остаются загадкой.
Экскурс в такие далекие для нашего предмета времена может показаться неуместным в книге, посвященной современной науке о материалах, однако следует помнить, что наука эта, подобно медицине, должна была прокладывать свой путь наперекор традиционной практике и суевериям. Не дать представления о тех глубинах антизнания, из которых должно было подняться современное материаловедение, значило бы в чем-то погрешить против истины.
(обратно)
Атомы, химия, единицы измерения
Несмотря на то что не всегда просто установить прямые связи между прочностью материалов и законами классической физики и химии, в конечном счете именно эти науки составляют фундамент материаловедения. Поэтому для тех, кто мог позабыть кое-что из школьной программы, в конце книги имеется приложение, где кратко изложены основные сведения, без знания которых трудно следить за дальнейшими рассуждениями. Однако для понимания материаловедения не в меньшей степени, чем знание законов химии и физики, необходимо правильное представление о размерах и масштабе. Иными словами, законы науки дают правила игры, но размеры шахматной доски, то есть те масштабы, в которых разыгрываются игры в природе и технике, постоянно и почти невообразимо изменяются. Поэтому остановимся, хотя бы кратко, на вопросе о масштабах и единицах измерения.
Кельвин не раз повторял, что наука начинается с измерений. Но для того, чтобы измерять, нужны единицы измерения. Для измерения сравнительно больших величин мы будем использовать сантиметры и миллиметры, тонны, килограммы и граммы. Оперируя очень малыми величинами, мы обычно становимся более рациональными и обращаемся к малым единицам. А поскольку материаловедение часто имеет дело именно с малыми величинами, которые не используются в повседневной жизни, об этих малых единицах следует рассказать подробнее. Микрон (мкм) - 1/10000 см, то есть 1/1000 мм. Размер самой маленькой точки, которую можно увидеть невооруженным глазом, - около 1/10 мм, то есть 100 мкм. А самый малый предмет, видимый с помощью обычного оптического микроскопа, как правило, меньше 0,5 мкм. На практике возможность видеть предмет в значительной степени зависит от условий освещения: так, в сильном луче света, проникающем в темную комнату, можно видеть невооруженным глазом частицы пыли размером в 10 мкм или даже меньше. Так как предел разрешения оптического микроскопа примерно равен одному микрону, микрон стал излюбленной единицей тех, кто в основном работает с этим микроскопом, в частности биологов.
Ангстрем (А) - 1/10000 мкм, или 1/100000000 см. Эта единица пользуется уважением тех, кто работает с электронным микроскопом, ее применяют для измерения атомов и молекул. С помощью современного электронного микроскопа можно рассмотреть (обычно в виде неясных пятен) частицы размером около 5 А. Это примерно в тысячу раз меньше того, что можно увидеть в лучшем оптическом микроскопе. Но и в этом случае разрешение сильно зависит от условий эксперимента.
Вероятно, здесь следует немного поговорить об атоме. Атомы - это то, из чего построены все вещества. Сами атомы состоят из очень малых и тяжелых ядер, окруженных облаком обращающихся вокруг них электронов, которые являются волнами, частицами или отрицательными зарядами электричества. Электроны несравненно меньше ядер атомов. Массы и размеры атомов различных веществ могут быть очень разными. Атомы можно представить себе в виде шариков с негладкой поверхностью диаметром, грубо говоря, около 2 А. По обыденным понятиям, это невообразимо малый размер, мы никогда не сможем увидеть отдельный атом с помощью обычного видимого света, хотя в массе своей атомы, конечно, являются перед нами в виде любого тела.