Чтение онлайн

ЖАНРЫ

Полеты воображения. Разум и эволюция против гравитации
Шрифт:

И САМОЛЕТЫ, И ПТИЦЫ ИМЕЮТ ДЕЛО С ОДНИМИ И ТЕМИ ЖЕ ЗАКОНАМИ ФИЗИКИ

И находят для одних и тех же задач похожие, но все же разные решения.

От сваливания страдают не только самолеты. Птицы – живые воздушные судна, и они тоже ему подвержены. Есть ли у них предкрылки, как у самолетов? В некотором роде. У многих парящих птиц образуются заметные зазоры между перьями на кончиках крыльев, и они, похоже, играют ту же роль. Элегантный пример – крылья грифов и орлов. Их огромные маховые перья первого порядка на внешней кромке крыла растопыриваются, словно лопасти вентилятора, и образуют большие промежутки. Поскольку перья очень велики, каждое из них играет роль миниатюрного крыла или предкрылка. Особенно это важно для тех птиц, которые поднимаются по спирали

внутри термика, птице нужно описывать небольшие круги, чтобы случайно не вылететь из термика. Поэтому внешнее крыло движется быстрее внутреннего, которое таким образом дает меньше подъемной силы и рискует сваливанием. Здесь необычайно полезны растопыренные перья на конце крыла, которые служат предкрылками для того крыла, которое находится ближе к центру термика.

Когда инженеры совершенствуют крылья самолетов, они часто испытывают свои проекты (обычно миниатюрные модели) в аэродинамической трубе. Вместо того чтобы разгонять модель до большой скорости в воздухе, они направляют на неподвижный самолет или крыло сильный встречный ветер. Иногда к крылу прикрепляют ленточки, чтобы видеть, что происходит, в частности – что делается с турбулентностью, когда меняешь разные параметры (форму крыла или угол набегающего потока). Когда модель крыла начинает сваливаться, ленточки поднимаются вверх, совсем как перья на задней кромке крыла белой цапли при сваливании.

УПРАВЛЯЕМОЕ СВАЛИВАНИЕ У ПТИЦ

Птицы не просто подвержены сваливанию: иногда они прибегают к нему нарочно, чтобы удобнее было садиться на землю. Когда крупная птица вроде серой или белой цапли заходит на посадку, у нее поднимаются перья на задней части крыльев – последствия турбулентности при сваливании.

Испытания в аэродинамической трубе – более легкий способ усовершенствовать проект, чем математические расчеты, которые в случае турбулентности становятся неподъемно сложными. И это, безусловно, более безопасный и дешевый способ, чем строить и испытывать несколько прототипов самолетов с разной формой крыла.

ОРНИТОПТЕР – ИЗОБРЕТЕНИЕ ЛЕОНАРДО

Он мог бы работать как дельтаплан, но махать крыльями при помощи мускульной силы человека было бы бессмысленно.

Разумеется, птичьи крылья усовершенствовались методом проб и ошибок в реальной жизни, причем ошибки в реальной жизни обходятся гораздо дороже, чем в аэродинамической трубе. Они могут привести к внезапной гибели или к сокращению продолжительности жизни и снижению шансов оставить потомство.

Леонардо да Винчи разработал летательные аппараты, немного похожие на современные дельтапланы. Кроме того, он проектировал и так называемые орнитоптеры – летательные аппараты с машущими крыльями, которые приводились в движение мускульной силой человека. Ни один из этих орнитоптеров в реальности не мог бы взлететь, хотя различные планеры, которые изобрел Леонардо, вполне дееспособны. Чтобы летать, махая крыльями, нужно больше энергии, чем могут дать человеческие мышцы. Только в конце XX века были получены ультралегкие материалы, способные компенсировать относительную слабость наших мышц. Когда наконец появились летательные аппараты, приводимые в действие человеком, оказалось, что эти машины не машут крыльями и вообще едва удерживаются в воздухе, что неудивительно.

Пожалуй, самый красивый из этих летательных аппаратов – Gossamer Albatross (“Шелковый альбатрос”), который создал гениальный изобретатель Пол Маккриди. Я имел честь побывать у него дома в Калифорнии.

Мистер Маккриди объяснил мне, почему его так увлекает обтекаемость. В частности, он много занимался автомобилями – его очень огорчало, что их проектируют так, чтобы они лишь выглядели обтекаемо на радость будущим покупателям, но на самом деле все иначе. Например, днище автомобиля не делают обтекаемым, возможно, отчасти потому, что его не видно и это не влияет на продажи. Обтекаемость играет важнейшую роль в жизни плавающих и летающих животных. Если вы когда-нибудь видели, как плавают пингвины и дельфины, вероятно, вы позавидовали их скорости. Люди-пловцы, даже выбритые до гладкости олимпийские чемпионы, по сравнению с ними еле шевелятся. Одно легкое движение хвоста – и дельфин мчится вперед, рассекая воду. Мало того что форма тела дельфина суперобтекаемая, у них еще и кожа постоянно обновляется – внешний слой отслаивается, словно перхоть, каждые два часа. Это снижает количество крошечных водоворотов, которые могли бы снижать скорость дельфина.

Вернемся к “Шелковому альбатросу”. Его приводит в движение опытный велосипедист, который крутит педали модифицированного велосипеда и тем самым вертит пропеллер. В 1979 году устройство успешно пересекло Ла-Манш, стартовав в Англии. Правда, затея едва не провалилась: пилот истощил все свои силы – хотя это был молодой спортсмен – и чуть не потерял сознание, завидев побережье Франции. Летательный аппарат двигался со скоростью от и до 28 км/ч всего в нескольких метрах над водой. Маккриди снабдил свое устройство стабилизирующим крылом, установив его перед главным. Кроме того, что соответствовало названию, крылья аппарата были очень узкие и длинные, с размахом почти 30 метров, а весил он всего 98 кг, причем больше половины приходилось на вес пилота. Маккриди избавил свой аппарат от лишнего веса до последнего грамма. Даже клей,

которым он скрепил детали устройства, был сверхлегким. Летающие животные тоже стараются быть как можно легче. Кости у птиц, птерозавров и летучих мышей полые: очередной компромисс между легкостью и прочностью. Может статься, что птицы утратили унаследованные от предков зубы, поскольку те были тяжелее заменившего их рогового клюва. Чем быстрее летательный аппарат, тем важнее роль обтекаемости, потому что сопротивление воздуха растет как квадрат скорости. Неслучайно современные скоростные авиалайнеры, где бы их ни проектировали, выглядят одинаково. Это объясняется не только промышленным шпионажем. Инженеры всех стран имеют дело с общими законами физики. Раньше, когда самолеты летали медленнее, такого единства форм не наблюдалось.

“ШЕЛКОВЫЙ АЛЬБАТРОС”

“Шелковый альбатрос” на пути через Ла-Манш еле выдерживал вес пилота-велосипедиста. Полет всегда требует огромных расходов энергии. Это практически предел того, на что способны человеческие мышцы.

После “Шелкового альбатроса” Пол Маккриди перешел к другим проектам, в частности, построил Solar Challenger (“Солнечный бунтарь”) – летательный аппарат на солнечной батарее, сверхлегкий и сверхобтекаемый. Его крылья и хвост были сплошь покрыты солнечными батареями, которые питали довольно большой пропеллер. Аппарат мог достигать скорости 65 км/ч и высоты более 4000 метров. В дальнейшем летательные аппараты на солнечных батареях смогли даже облететь вокруг света, не в один прием, конечно, путешествие заняло несколько месяцев. Они могут летать и ночью на аккумуляторных батареях, зарядившихся за день.

“Шелковый альбатрос” расширил пределы того, чего можно достичь мускульной силой человека. Он совершил то, что должны были сделать машины Леонардо, причем ему не пришлось махать крыльями, словно птица, как предполагали конструкции Леонардо. Мускульная сила двигала “Шелковый альбатрос” вперед благодаря вращению пропеллера или винта. А подъемную силу аппарат получал косвенно за счет этого движения вперед.

Братья Райт в 1903 году положили начало активному полету, сконструировав двигатель внутреннего сгорания. В 1930-е появились реактивные двигатели. Удивительно, что между достижением братьев Райт и первым сверхзвуковым полетом прошло лишь около 40 лет. И еще через 20 лет представителей нашего вида запустили на Луну и обратно. Я здесь нарочно использую слово “запустили”. Ракеты стартуют в восточном направлении, чтобы воспользоваться скоростью вращения Земли, которая запускает их на орбиту, словно из рогатки. Европейское космическое агентство оборудовало стартовые площадки во французской Гвиане, поскольку она располагается близко к экватору, где вращению Земли легче всего вытолкнуть ракеты на орбиту.

Кстати, приведу очень простое объяснение, как действует закон Бернулли, без единого математического символа. Прежде всего нужно понять, что означает давление воздуха на молекулярном уровне. Давление на поверхность – это суммарное воздействие триллионов молекул, которые по ней барабанят. Молекулы воздуха непрерывно мечутся в случайных направлениях, меняя их всякий раз, когда сталкиваются с чем-нибудь, например, друг с другом или с поверхностью. Когда надуваешь воздушный шарик, его внутренняя поверхность находится под большим давлением, чем внешняя. Внутри больше молекул воздуха на кубический сантиметр, чем снаружи, поэтому каждый квадратный сантиметр резины подвергается более интенсивной молекулярной бомбардировке изнутри, чем снаружи. Возьмите карточку, которая с одной стороны красного цвета, а с другой – зеленого. В безветренный день молекулы бомбардируют обе стороны карточки с одинаковой частотой. Но если подставить карточку красной стороной туда, откуда дует ветер, темп, в котором молекулы будут бомбардировать красную сторону, повысится, и вы ощутите давление ветра на карточку. А теперь о законе Бернулли: поверните карточку горизонтально, красной стороной вверх, теперь ветер дует вдоль карточки (и обтекает обе ее стороны). Молекулы воздуха по-прежнему случайным образом отскакивают от всего, в том числе от обеих сторон карточки. Но движение молекул теперь отчасти определяется направлением ветра. Следовательно, на обе поверхности попадает меньше молекул – они проносятся мимо карточки. Это все равно что сказать, что давление на обе поверхности снижается: карточка не взлетает и не падает. Наконец, мы подстраиваем условия эксперимента так, чтобы ветер вдоль красной поверхности дул быстрее, чем вдоль зеленой. Возьмите для этого, скажем, два фена. Давление на красную поверхность уменьшится сильнее, чем на зеленую, и карточка поднимется вверх.

Глава 8

Активный полет у живых существ

Механика полета у живых существ сложнее, чем механика полета рукотворных машин. Отчасти потому, что машущие крылья толкают животное вперед (принцип самолета) и одновременно толкают воздух вниз (скорее как у вертолета). Если посмотреть, как летает птица в замедленной съемке, вы заметите, что изгиб крыла в сочетании с упругой гибкостью перьев толкает птицу вперед, а это, в свою очередь, обеспечивает подъемную силу двумя уже известными нам способами – ньютоновским и бернуллиевским. Одновременно движение крыла вниз дает подъемную силу само по себе, как мы знаем из начала предыдущей главы. Движение крыла вверх не производит обратного воздействия, отчасти это происходит благодаря кривизне крыла, а отчасти благодаря тому, что оно дополнительно изгибается, локтевой и запястный суставы подтягивают его внутрь, так что площадь крыла сокращается по сравнению с мощным движением вниз.

Поделиться с друзьями: